Ir-O-Mn embedded in porous nanosheets enhances charge transfer in low-iridium PEM electrolyzers

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-02 DOI:10.1038/s41467-024-54646-8
Dawei Wang, Fangxu Lin, Heng Luo, Jinhui Zhou, Wenshu Zhang, Lu Li, Yi Wei, Qinghua Zhang, Lin Gu, Yanfei Wang, Mingchuan Luo, Fan Lv, Shaojun Guo
{"title":"Ir-O-Mn embedded in porous nanosheets enhances charge transfer in low-iridium PEM electrolyzers","authors":"Dawei Wang, Fangxu Lin, Heng Luo, Jinhui Zhou, Wenshu Zhang, Lu Li, Yi Wei, Qinghua Zhang, Lin Gu, Yanfei Wang, Mingchuan Luo, Fan Lv, Shaojun Guo","doi":"10.1038/s41467-024-54646-8","DOIUrl":null,"url":null,"abstract":"<p>Using metal oxides to disperse iridium (Ir) in the anode layer proves effective for lowering Ir loading in proton exchange membrane water electrolyzers (PEMWE). However, the reported low-Ir-based catalysts still suffer from unsatisfying electrolytic efficiency and durability under practical industrial working conditions, mainly due to insufficient catalytic activity and mass transport in the catalyst layer. Herein we report a class of porous heterogeneous nanosheet catalyst with abundant Ir-O-Mn bonds, achieving a notable mass activity of 4 A mg<sub>Ir</sub><sup>−1</sup> for oxygen evolution reaction at an overpotential of 300 mV, which is 150.6 times higher than that of commercial IrO<sub>2</sub>. Ir-O-Mn bonds are unraveled to serve as efficient charge-transfer channels between in-situ electrochemically-formed IrO<sub>x</sub> clusters and MnO<sub>x</sub> matrix, fostering the generation and stabilization of highly active Ir<sup>3+</sup> species. Notably, Ir/MnO<sub>x</sub>-based PEMWE demonstrates comparable performance under 10-fold lower Ir loading (0.2 mg<sub>Ir</sub> cm<sup>−2</sup>), taking a low cell voltage of 1.63 V to deliver 1 A cm<sup>−2</sup> for over 300 h, which positions it among the elite of low Ir-based PEMWEs.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"375 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54646-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Using metal oxides to disperse iridium (Ir) in the anode layer proves effective for lowering Ir loading in proton exchange membrane water electrolyzers (PEMWE). However, the reported low-Ir-based catalysts still suffer from unsatisfying electrolytic efficiency and durability under practical industrial working conditions, mainly due to insufficient catalytic activity and mass transport in the catalyst layer. Herein we report a class of porous heterogeneous nanosheet catalyst with abundant Ir-O-Mn bonds, achieving a notable mass activity of 4 A mgIr−1 for oxygen evolution reaction at an overpotential of 300 mV, which is 150.6 times higher than that of commercial IrO2. Ir-O-Mn bonds are unraveled to serve as efficient charge-transfer channels between in-situ electrochemically-formed IrOx clusters and MnOx matrix, fostering the generation and stabilization of highly active Ir3+ species. Notably, Ir/MnOx-based PEMWE demonstrates comparable performance under 10-fold lower Ir loading (0.2 mgIr cm−2), taking a low cell voltage of 1.63 V to deliver 1 A cm−2 for over 300 h, which positions it among the elite of low Ir-based PEMWEs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入在多孔纳米片中的Ir-O-Mn增强了低铱PEM电解槽中的电荷转移
在质子交换膜水电解槽(PEMWE)阳极层中采用金属氧化物分散铱(Ir),可有效降低铱的负载量。然而,目前报道的低ir基催化剂在实际工业条件下的电解效率和耐久性仍不理想,主要原因是催化剂层的催化活性和质量传输不足。本文报道了一类具有丰富的Ir-O-Mn键的多孔非均相纳米片催化剂,在过电位为300 mV时,其析氧反应的质量活性为4 a mbr - 1,比商用IrO2高150.6倍。Ir-O-Mn键被解开,作为原位电化学形成的IrOx簇和MnOx基质之间的有效电荷转移通道,促进了高活性Ir3+物质的生成和稳定。值得注意的是,基于Ir/ mnx的PEMWE在10倍低Ir负载(0.2 mgIr cm - 2)下表现出相当的性能,在1.63 V的低电池电压下提供1 a cm - 2超过300小时,这使其成为低Ir基PEMWE中的优秀产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
Manganese chloride
阿拉丁
Perchloric acid
阿拉丁
Potassium hydroxide
阿拉丁
Potassium nitrate
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Structure and unusual binding mechanism of the hyaluronan receptor LYVE-1 mediating leucocyte entry to lymphatics Temporal stability of forest productivity declines over stand age at multiple spatial scales Structurally heterogeneous ribosomes cooperate in protein synthesis in bacterial cells Integrative single-cell metabolomics and phenotypic profiling reveals metabolic heterogeneity of cellular oxidation and senescence Dipeptidyl peptidase DPF-3 is a gatekeeper of microRNA Argonaute compensation in animals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1