Wilhelm Furnon, Vanessa M. Cowton, Giuditta De Lorenzo, Richard Orton, Vanessa Herder, Diego Cantoni, Georgios Ilia, Diogo Correa Mendonca, Karen Kerr, Jay Allan, Nicole Upfold, Gavin R. Meehan, Siddharth Bakshi, Udeet Ranjan Das, Sergi Molina Arias, Marion McElwee, Sarah Little, Nicola Logan, Kirsty Kwok, Katherine Smollett, Brian J. Willett, Ana Da Silva Filipe, David L. Robertson, Joe Grove, Arvind H. Patel, Massimo Palmarini
{"title":"Phenotypic evolution of SARS-CoV-2 spike during the COVID-19 pandemic","authors":"Wilhelm Furnon, Vanessa M. Cowton, Giuditta De Lorenzo, Richard Orton, Vanessa Herder, Diego Cantoni, Georgios Ilia, Diogo Correa Mendonca, Karen Kerr, Jay Allan, Nicole Upfold, Gavin R. Meehan, Siddharth Bakshi, Udeet Ranjan Das, Sergi Molina Arias, Marion McElwee, Sarah Little, Nicola Logan, Kirsty Kwok, Katherine Smollett, Brian J. Willett, Ana Da Silva Filipe, David L. Robertson, Joe Grove, Arvind H. Patel, Massimo Palmarini","doi":"10.1038/s41564-024-01878-5","DOIUrl":null,"url":null,"abstract":"<p>SARS-CoV-2 variants are mainly defined by mutations in their spike. It is therefore critical to understand how the evolutionary trajectories of spike affect virus phenotypes. So far, it has been challenging to comprehensively compare the many spikes that emerged during the pandemic in a single experimental platform. Here we generated a panel of recombinant viruses carrying different spike proteins from 27 variants circulating between 2020 and 2024 in the same genomic background. We then assessed several of their phenotypic traits both in vitro and in vivo. We found distinct phenotypic trajectories of spike among and between variants circulating before and after the emergence of Omicron variants. Spike of post-Omicron variants maintained enhanced tropism for the nasal epithelium and large airways but displayed, over time, several phenotypic traits typical of the pre-Omicron variants. Hence, spike with phenotypic features of both pre- and post-Omicron variants may continue to emerge in the future.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"27 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-024-01878-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
SARS-CoV-2 variants are mainly defined by mutations in their spike. It is therefore critical to understand how the evolutionary trajectories of spike affect virus phenotypes. So far, it has been challenging to comprehensively compare the many spikes that emerged during the pandemic in a single experimental platform. Here we generated a panel of recombinant viruses carrying different spike proteins from 27 variants circulating between 2020 and 2024 in the same genomic background. We then assessed several of their phenotypic traits both in vitro and in vivo. We found distinct phenotypic trajectories of spike among and between variants circulating before and after the emergence of Omicron variants. Spike of post-Omicron variants maintained enhanced tropism for the nasal epithelium and large airways but displayed, over time, several phenotypic traits typical of the pre-Omicron variants. Hence, spike with phenotypic features of both pre- and post-Omicron variants may continue to emerge in the future.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.