MSM-TDE: multi-scale semantics mining and tiny details enhancement network for retinal vessel segmentation

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2025-01-02 DOI:10.1007/s40747-024-01714-7
Hongbin Zhang, Jin Zhang, Xuan Zhong, Ya Feng, Guangli Li, Xiong Li, Jingqin Lv, Donghong Ji
{"title":"MSM-TDE: multi-scale semantics mining and tiny details enhancement network for retinal vessel segmentation","authors":"Hongbin Zhang, Jin Zhang, Xuan Zhong, Ya Feng, Guangli Li, Xiong Li, Jingqin Lv, Donghong Ji","doi":"10.1007/s40747-024-01714-7","DOIUrl":null,"url":null,"abstract":"<p>Retinal image segmentation is crucial for the early diagnosis of some diseases like diabetes and hypertension. Current methods face many challenges, such as inadequate multi-scale semantics and insufficient global information. In view of this, we propose a network called multi-scale semantics mining and tiny details enhancement (MSM-TDE). First, a multi-scale feature input module is designed to capture multi-scale semantics information from the source. Then a fresh multi-scale attention guidance module is constructed to mine local multi-scale semantics while a global semantics enhancement module is proposed to extract global multi-scale semantics. Additionally, an auxiliary vessel detail enhancement branch using dynamic snake convolution is built to enhance the tiny vessel details. Extensive experimental results on four public datasets validate the superiority of MSM-TDE, which obtains competitive performance with satisfactory model complexity. Notably, this study provides an innovative idea of multi-scale semantics mining by diverse methods.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"70 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01714-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal image segmentation is crucial for the early diagnosis of some diseases like diabetes and hypertension. Current methods face many challenges, such as inadequate multi-scale semantics and insufficient global information. In view of this, we propose a network called multi-scale semantics mining and tiny details enhancement (MSM-TDE). First, a multi-scale feature input module is designed to capture multi-scale semantics information from the source. Then a fresh multi-scale attention guidance module is constructed to mine local multi-scale semantics while a global semantics enhancement module is proposed to extract global multi-scale semantics. Additionally, an auxiliary vessel detail enhancement branch using dynamic snake convolution is built to enhance the tiny vessel details. Extensive experimental results on four public datasets validate the superiority of MSM-TDE, which obtains competitive performance with satisfactory model complexity. Notably, this study provides an innovative idea of multi-scale semantics mining by diverse methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度语义挖掘和微小细节增强网络的视网膜血管分割
视网膜图像分割对于糖尿病、高血压等疾病的早期诊断至关重要。现有的方法面临着多尺度语义不足、全局信息不足等诸多挑战。鉴于此,我们提出了一种多尺度语义挖掘和微小细节增强(MSM-TDE)网络。首先,设计了多尺度特征输入模块,从源中捕获多尺度语义信息。然后构建了新的多尺度注意力引导模块来挖掘局部多尺度语义,同时提出了全局语义增强模块来提取全局多尺度语义。此外,利用动态蛇形卷积建立辅助血管细节增强分支,增强微血管细节。在四个公共数据集上的大量实验结果验证了MSM-TDE的优越性,该方法在获得满意的模型复杂度的同时获得了具有竞争力的性能。值得注意的是,本研究提供了一种采用多种方法进行多尺度语义挖掘的创新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Tailored meta-learning for dual trajectory transformer: advancing generalized trajectory prediction Control strategy of robotic manipulator based on multi-task reinforcement learning Explainable and secure framework for autism prediction using multimodal eye tracking and kinematic data A novel three-way distance-based fuzzy large margin distribution machine for imbalance classification Chaos-enhanced metaheuristics: classification, comparison, and convergence analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1