A rapid chemical reprogramming system to generate human pluripotent stem cells

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nature chemical biology Pub Date : 2025-01-03 DOI:10.1038/s41589-024-01799-8
Yanglu Wang, Fangqi Peng, Zhihan Yang, Lin Cheng, Jingxiao Cao, Xiaodi Fu, Huanjing He, Ruyi Cai, Weizhen Zeng, Yingshuai Dong, Guanxian Chen, Gongxin Peng, Shijia Liuyang, Guan Wang, Jinlin Wang, Rong Mu, Cheng Li, Jingyang Guan, Hongkui Deng
{"title":"A rapid chemical reprogramming system to generate human pluripotent stem cells","authors":"Yanglu Wang, Fangqi Peng, Zhihan Yang, Lin Cheng, Jingxiao Cao, Xiaodi Fu, Huanjing He, Ruyi Cai, Weizhen Zeng, Yingshuai Dong, Guanxian Chen, Gongxin Peng, Shijia Liuyang, Guan Wang, Jinlin Wang, Rong Mu, Cheng Li, Jingyang Guan, Hongkui Deng","doi":"10.1038/s41589-024-01799-8","DOIUrl":null,"url":null,"abstract":"<p>Chemical reprogramming enables the generation of human pluripotent stem (hCiPS) cells from somatic cells using small molecules, providing a promising strategy for regenerative medicine. However, the current method is time consuming, and some cell lines from different donors are resistant to chemical induction, limiting the utility of this approach. Here, we developed a fast reprogramming system capable of generating hCiPS cells in as few as 10 days. This accelerated method enables efficient generation of hCiPS cells with a consistent 100% success rate across 15 different donors, increasing efficiency by over 20-fold within 16 days, especially for previously resistant cells. Mechanistically, we identified KAT3A/KAT3B and KAT6A as key epigenetic obstacles; suppressing these factors facilitated the transition of somatic cells to a poised state by triggering switches in the epigenome. These results highlight the superiority of this system for generating hCiPS cells, which represents a next-generation approach for manufacturing cells for further applications.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"48 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01799-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical reprogramming enables the generation of human pluripotent stem (hCiPS) cells from somatic cells using small molecules, providing a promising strategy for regenerative medicine. However, the current method is time consuming, and some cell lines from different donors are resistant to chemical induction, limiting the utility of this approach. Here, we developed a fast reprogramming system capable of generating hCiPS cells in as few as 10 days. This accelerated method enables efficient generation of hCiPS cells with a consistent 100% success rate across 15 different donors, increasing efficiency by over 20-fold within 16 days, especially for previously resistant cells. Mechanistically, we identified KAT3A/KAT3B and KAT6A as key epigenetic obstacles; suppressing these factors facilitated the transition of somatic cells to a poised state by triggering switches in the epigenome. These results highlight the superiority of this system for generating hCiPS cells, which represents a next-generation approach for manufacturing cells for further applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成人类多能干细胞的快速化学重编程系统
化学重编程使小分子体细胞生成人类多能干细胞(hCiPS)成为可能,为再生医学提供了一种有前景的策略。然而,目前的方法耗时,而且来自不同供体的一些细胞系对化学诱导有抗性,限制了这种方法的实用性。在这里,我们开发了一种快速重编程系统,能够在短短10天内生成hCiPS细胞。这种加速的方法能够高效地生成hCiPS细胞,在15个不同的供体中保持100%的成功率,在16天内将效率提高了20倍以上,特别是对于先前耐药的细胞。机制上,我们确定KAT3A/KAT3B和KAT6A是关键的表观遗传障碍;抑制这些因子通过触发表观基因组中的开关,促进了体细胞向平衡状态的转变。这些结果突出了该系统在生成hCiPS细胞方面的优势,这代表了下一代制造细胞的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
期刊最新文献
Quantitative chemoproteomics reveals dopamine’s protective modification of Tau The small molecule Ebio3 inactivates the KCNQ2 channel without blocking the pore xrRNAs adopt a long-lived conformation that prevents exonuclease activity Tracking E2-specific substrates Visualizing drug effects over time in live animals using optical pharmacodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1