{"title":"Stable-Cycling Sustainable Na-Ion Batteries with Olivine Iron Phosphate Cathode in an Ether Electrolyte","authors":"Dawei Xia, Weibo Huang, Chenguang Shi, Anika Promi, Dong Hou, Chengjun Sun, Sooyeon Hwang, Gihan Kwon, Haibo Huang, Feng Lin","doi":"10.1021/acssuschemeng.4c06900","DOIUrl":null,"url":null,"abstract":"Sustainable batteries using nontoxic, earth-abundant, and low-cost materials are key to decarbonization. Olivine NaFePO<sub>4</sub> fulfills these criteria, is attractive for Na-ion batteries, and can be derived from LiFePO<sub>4</sub> recycled from Li-ion battery wastes. Critical knowledge is needed for transforming LiFePO<sub>4</sub> to NaFePO<sub>4</sub> to enable such a sustainable, green engineering path toward high-performance Na-ion batteries. Herein, we report on the development of a stable-cycling, sustainable olivine iron phosphate-based Na-ion battery empowered by an improved understanding of materials transformation and electrolyte chemistry. First, we found that the conventional carbonate electrolyte with fluoroethylene carbonate additive causes an additional plateau (∼2.4 V) at the end of the discharge process of the FePO<sub>4</sub>||Na metal cell, leading to lower initial discharge capacity and voltage. This result shows that the voltage profile is influenced by not only intrinsic materials phase transformation during battery cycling but also the electrolyte additives and interphases formed. With the 1 M NaPF<sub>6</sub> diglyme electrolyte, we achieved an excellent capacity retention of 96% and 98% after 500 cycles at 1 and 5 C, respectively. Second, we chemically sodiated FePO<sub>4</sub> to form single-phase Na<sub>0.9</sub>FePO<sub>4</sub>. Na<sub>0.9</sub>FePO<sub>4</sub>||hard carbon full cells demonstrated a remarkable capacity retention of ∼84% at 3 and 5 C after 1000 cycles. The successful implementation of hard carbon, which can be derived from biomass waste, will further improve the sustainability of energy storage technologies. Our research demonstrates that electrolyte chemistry influences the voltage profile of phase-changing electrodes and provides effective electrolyte and full-cell design solutions for stable-cycling NaFePO<sub>4</sub>.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"34 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c06900","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainable batteries using nontoxic, earth-abundant, and low-cost materials are key to decarbonization. Olivine NaFePO4 fulfills these criteria, is attractive for Na-ion batteries, and can be derived from LiFePO4 recycled from Li-ion battery wastes. Critical knowledge is needed for transforming LiFePO4 to NaFePO4 to enable such a sustainable, green engineering path toward high-performance Na-ion batteries. Herein, we report on the development of a stable-cycling, sustainable olivine iron phosphate-based Na-ion battery empowered by an improved understanding of materials transformation and electrolyte chemistry. First, we found that the conventional carbonate electrolyte with fluoroethylene carbonate additive causes an additional plateau (∼2.4 V) at the end of the discharge process of the FePO4||Na metal cell, leading to lower initial discharge capacity and voltage. This result shows that the voltage profile is influenced by not only intrinsic materials phase transformation during battery cycling but also the electrolyte additives and interphases formed. With the 1 M NaPF6 diglyme electrolyte, we achieved an excellent capacity retention of 96% and 98% after 500 cycles at 1 and 5 C, respectively. Second, we chemically sodiated FePO4 to form single-phase Na0.9FePO4. Na0.9FePO4||hard carbon full cells demonstrated a remarkable capacity retention of ∼84% at 3 and 5 C after 1000 cycles. The successful implementation of hard carbon, which can be derived from biomass waste, will further improve the sustainability of energy storage technologies. Our research demonstrates that electrolyte chemistry influences the voltage profile of phase-changing electrodes and provides effective electrolyte and full-cell design solutions for stable-cycling NaFePO4.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.