DeepSN-Net: Deep Semi-Smooth Newton Driven Network for Blind Image Restoration

Xin Deng;Chenxiao Zhang;Lai Jiang;Jingyuan Xia;Mai Xu
{"title":"DeepSN-Net: Deep Semi-Smooth Newton Driven Network for Blind Image Restoration","authors":"Xin Deng;Chenxiao Zhang;Lai Jiang;Jingyuan Xia;Mai Xu","doi":"10.1109/TPAMI.2024.3525089","DOIUrl":null,"url":null,"abstract":"The deep unfolding network represents a promising research avenue in image restoration. However, most current deep unfolding methodologies are anchored in first-order optimization algorithms, which suffer from sluggish convergence speed and unsatisfactory learning efficiency. In this paper, to address this issue, we first formulate an improved second-order semi-smooth Newton (ISN) algorithm, transforming the original nonlinear equations into an optimization problem amenable to network implementation. After that, we propose an innovative network architecture based on the ISN algorithm for blind image restoration, namely DeepSN-Net. To the best of our knowledge, DeepSN-Net is the first successful endeavor to design a second-order deep unfolding network for image restoration, which fills the blank of this area. Furthermore, it offers several distinct advantages: 1) DeepSN-Net provides a unified framework to a variety of image restoration tasks in both synthetic and real-world contexts, without imposing constraints on the degradation conditions. 2) The network architecture is meticulously aligned with the ISN algorithm, ensuring that each module possesses robust physical interpretability. 3) The network exhibits high learning efficiency, superior restoration accuracy and good generalization ability across 11 datasets on three typical restoration tasks. The success of DeepSN-Net on image restoration may ignite many subsequent works centered around the second-order optimization algorithms, which is good for the community.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2632-2646"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10820096/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The deep unfolding network represents a promising research avenue in image restoration. However, most current deep unfolding methodologies are anchored in first-order optimization algorithms, which suffer from sluggish convergence speed and unsatisfactory learning efficiency. In this paper, to address this issue, we first formulate an improved second-order semi-smooth Newton (ISN) algorithm, transforming the original nonlinear equations into an optimization problem amenable to network implementation. After that, we propose an innovative network architecture based on the ISN algorithm for blind image restoration, namely DeepSN-Net. To the best of our knowledge, DeepSN-Net is the first successful endeavor to design a second-order deep unfolding network for image restoration, which fills the blank of this area. Furthermore, it offers several distinct advantages: 1) DeepSN-Net provides a unified framework to a variety of image restoration tasks in both synthetic and real-world contexts, without imposing constraints on the degradation conditions. 2) The network architecture is meticulously aligned with the ISN algorithm, ensuring that each module possesses robust physical interpretability. 3) The network exhibits high learning efficiency, superior restoration accuracy and good generalization ability across 11 datasets on three typical restoration tasks. The success of DeepSN-Net on image restoration may ignite many subsequent works centered around the second-order optimization algorithms, which is good for the community.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepSN-Net:用于盲图像恢复的深度半光滑牛顿驱动网络
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List* Rate-Distortion Theory in Coding for Machines and its Applications. Visible-Thermal Tiny Object Detection: A Benchmark Dataset and Baselines. Class-Agnostic Repetitive Action Counting Using Wearable Devices. On the Upper Bounds of Number of Linear Regions and Generalization Error of Deep Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1