Cytoskeleton-functionalized synthetic cells with life-like mechanical features and regulated membrane dynamicity

IF 19.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nature chemistry Pub Date : 2025-01-03 DOI:10.1038/s41557-024-01697-5
Sebastian Novosedlik, Felix Reichel, Thijs van Veldhuisen, Yudong Li, Hanglong Wu, Henk Janssen, Jochen Guck, Jan van Hest
{"title":"Cytoskeleton-functionalized synthetic cells with life-like mechanical features and regulated membrane dynamicity","authors":"Sebastian Novosedlik, Felix Reichel, Thijs van Veldhuisen, Yudong Li, Hanglong Wu, Henk Janssen, Jochen Guck, Jan van Hest","doi":"10.1038/s41557-024-01697-5","DOIUrl":null,"url":null,"abstract":"<p>The cytoskeleton is a crucial determinant of mammalian cell structure and function, providing mechanical resilience, supporting the cell membrane and orchestrating essential processes such as cell division and motility. Because of its fundamental role in living cells, developing a reconstituted or artificial cytoskeleton is of major interest. Here we present an approach to construct an artificial cytoskeleton that imparts mechanical support and regulates membrane dynamics. Our system involves amylose-based coacervates stabilized by a terpolymer membrane, with a cytoskeleton formed from polydiacetylene fibrils. The fibrils bundle due to interactions with the positively charged amylose derivative, forming micrometre-sized structures mimicking a cytoskeleton. Given the intricate interplay between cellular structure and function, the design and integration of this artificial cytoskeleton represent a crucial advancement, paving the way for the development of artificial cell platforms exhibiting enhanced life-like behaviour.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"72 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01697-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The cytoskeleton is a crucial determinant of mammalian cell structure and function, providing mechanical resilience, supporting the cell membrane and orchestrating essential processes such as cell division and motility. Because of its fundamental role in living cells, developing a reconstituted or artificial cytoskeleton is of major interest. Here we present an approach to construct an artificial cytoskeleton that imparts mechanical support and regulates membrane dynamics. Our system involves amylose-based coacervates stabilized by a terpolymer membrane, with a cytoskeleton formed from polydiacetylene fibrils. The fibrils bundle due to interactions with the positively charged amylose derivative, forming micrometre-sized structures mimicking a cytoskeleton. Given the intricate interplay between cellular structure and function, the design and integration of this artificial cytoskeleton represent a crucial advancement, paving the way for the development of artificial cell platforms exhibiting enhanced life-like behaviour.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞骨架功能化的合成细胞,具有类似生命的机械特征和可调节的膜动力学
细胞骨架是哺乳动物细胞结构和功能的关键决定因素,提供机械弹性,支持细胞膜并协调细胞分裂和运动等基本过程。由于其在活细胞中的基本作用,开发重建或人工细胞骨架是主要的兴趣。在这里,我们提出了一种方法来构建一个人工细胞骨架,赋予机械支持和调节膜动力学。我们的系统包括由三元共聚物膜稳定的淀粉基凝聚体,以及由聚二乙炔原纤维形成的细胞骨架。原纤维束由于与带正电荷的直链淀粉衍生物相互作用,形成微米大小的结构,模拟细胞骨架。考虑到细胞结构和功能之间错综复杂的相互作用,这种人造细胞骨架的设计和集成代表了一个关键的进步,为开发具有增强的类生命行为的人造细胞平台铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature chemistry
Nature chemistry 化学-化学综合
CiteScore
29.60
自引率
1.40%
发文量
226
审稿时长
1.7 months
期刊介绍: Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry. The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry. Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry. Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests. Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.
期刊最新文献
Protons undermine lithium-ion batteries with positively disastrous results Enantioselective synthesis of 2-substituted bicyclo[1.1.1]pentanes via sequential asymmetric imine addition of bicyclo[1.1.0]butanes and skeletal editing Supramolecular dyads as photogenerated qubit candidates Coacervating proteins stick like a tick Computational design of highly signalling-active membrane receptors through solvent-mediated allosteric networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1