Construction of Linear Tetramer‐type Acceptors for High‐efficiency and High‐stability Organic Solar Cells

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-03 DOI:10.1002/anie.202420453
Rui Zeng, Jiawei Deng, Xiaonan Xue, Senke Tan, Lixuan Kan, Yi Lin, Wenkai Zhong, Lei Zhu, Fei Han, Yuhao Zhou, Xingyu Gao, Ming Zhang, Yongming Zhang, Shengjie Xu, Feng Liu
{"title":"Construction of Linear Tetramer‐type Acceptors for High‐efficiency and High‐stability Organic Solar Cells","authors":"Rui Zeng, Jiawei Deng, Xiaonan Xue, Senke Tan, Lixuan Kan, Yi Lin, Wenkai Zhong, Lei Zhu, Fei Han, Yuhao Zhou, Xingyu Gao, Ming Zhang, Yongming Zhang, Shengjie Xu, Feng Liu","doi":"10.1002/anie.202420453","DOIUrl":null,"url":null,"abstract":"The photovoltaic conversion efficiency (PCE) of organic solar cells (OSCs) has exceeded 20%, which has met the requirements for commercialisation. In the current stage, the main focus is to balance the performance and stability. It has been shown that all‐polymer formulation can improve device stability, however, PCE is not in satifsfaction, and the batch‐to‐batch variation leads to quality control issues. In this work, we constructed monodispersed tetramer NFA materials named G‐1 and G‐2, to best integrate the merits of small molecule and polymer. It was revealed that different connecting units at the centre could significantly affect the molecular planarity and thin film morphology. The alkene‐bonded tetramer G‐1 had a more regioregular structure, leading to better molecular planarity, and more ordered packing in thin film. More importantly, the oligomeration induced a favourable face‐on orientation, achieved a lower binding energy and a higher photoluminescence yield. As a result, the exciton and charge carrier kinetics was optimized with reduced non‐radiative energy loss. The OSC based on PM6:G‐1 achieved a PCE of 19.6%, which is the highest PCE reported so far for oligomer‐based binary OSC. In addition, the device stability was largely improved, showing a lifetime over 10000 hours in the inverted OSC device.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"72 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420453","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The photovoltaic conversion efficiency (PCE) of organic solar cells (OSCs) has exceeded 20%, which has met the requirements for commercialisation. In the current stage, the main focus is to balance the performance and stability. It has been shown that all‐polymer formulation can improve device stability, however, PCE is not in satifsfaction, and the batch‐to‐batch variation leads to quality control issues. In this work, we constructed monodispersed tetramer NFA materials named G‐1 and G‐2, to best integrate the merits of small molecule and polymer. It was revealed that different connecting units at the centre could significantly affect the molecular planarity and thin film morphology. The alkene‐bonded tetramer G‐1 had a more regioregular structure, leading to better molecular planarity, and more ordered packing in thin film. More importantly, the oligomeration induced a favourable face‐on orientation, achieved a lower binding energy and a higher photoluminescence yield. As a result, the exciton and charge carrier kinetics was optimized with reduced non‐radiative energy loss. The OSC based on PM6:G‐1 achieved a PCE of 19.6%, which is the highest PCE reported so far for oligomer‐based binary OSC. In addition, the device stability was largely improved, showing a lifetime over 10000 hours in the inverted OSC device.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Electrolyte Decoupling Strategy for Metal Oxide-Based Zinc-ion Batteries Free of Crosstalk Effect A Zero-gap Electrolyzer Enables Supporting Electrolyte-free Seawater Splitting for Energy-saving Hydrogen Production Electrocatalytic Micelle-Driven Hydrodefluorination for Accessing Unprotected Monofluorinated Indoles Enantioselective [3+2] Annulation of Aldimines with Alkynes by Scandium‐Catalyzed C−H Activation On the Role of Hydrogen Migrations in the Taxadiene System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1