NEK7 phosphorylation amplifies NLRP3 inflammasome activation downstream of potassium efflux and gasdermin D

IF 17.6 1区 医学 Q1 IMMUNOLOGY Science Immunology Pub Date : 2025-01-03 DOI:10.1126/sciimmunol.adl2993
Jie Xu, Lingzhi Zhang, Yanhui Duan, Fangyuan Sun, Nouha Odeh, Yuan He, Gabriel Núñez
{"title":"NEK7 phosphorylation amplifies NLRP3 inflammasome activation downstream of potassium efflux and gasdermin D","authors":"Jie Xu, Lingzhi Zhang, Yanhui Duan, Fangyuan Sun, Nouha Odeh, Yuan He, Gabriel Núñez","doi":"10.1126/sciimmunol.adl2993","DOIUrl":null,"url":null,"abstract":"The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K <jats:sup>+</jats:sup> efflux. However, the mechanism by which K <jats:sup>+</jats:sup> efflux promotes this interaction remains unknown. Here, we show that NEK7 is rapidly phosphorylated at threonine-190/191 by JNK1 downstream of K <jats:sup>+</jats:sup> efflux and gasdermin D (GSDMD) after NLRP3 activation. NEK7 phosphorylation enhances the binding between NEK7 and NLRP3, which further promotes inflammasome assembly and activation. Mutant mice and macrophages in which Thr <jats:sup>190</jats:sup> and Thr <jats:sup>191</jats:sup> of Nek7 were replaced by valine exhibited impaired NEK7 phosphorylation, NLRP3 inflammasome activation, and IL-1β secretion. Thus, NEK7 phosphorylation is an important event that acts downstream of K <jats:sup>+</jats:sup> efflux and GSDMD to further enhance NLRP3 inflammasome activation.","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"2 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/sciimmunol.adl2993","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K + efflux. However, the mechanism by which K + efflux promotes this interaction remains unknown. Here, we show that NEK7 is rapidly phosphorylated at threonine-190/191 by JNK1 downstream of K + efflux and gasdermin D (GSDMD) after NLRP3 activation. NEK7 phosphorylation enhances the binding between NEK7 and NLRP3, which further promotes inflammasome assembly and activation. Mutant mice and macrophages in which Thr 190 and Thr 191 of Nek7 were replaced by valine exhibited impaired NEK7 phosphorylation, NLRP3 inflammasome activation, and IL-1β secretion. Thus, NEK7 phosphorylation is an important event that acts downstream of K + efflux and GSDMD to further enhance NLRP3 inflammasome activation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Immunology
Science Immunology Immunology and Microbiology-Immunology
CiteScore
32.90
自引率
2.00%
发文量
183
期刊介绍: Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.
期刊最新文献
NEK7 phosphorylation amplifies NLRP3 inflammasome activation downstream of potassium efflux and gasdermin D Functional differences between rodent and human PD-1 linked to evolutionary divergence Suppression of thrombospondin-1–mediated inflammaging prolongs hematopoietic health span Molecular scalpels dissect new GluN1 hot spots in anti-NMDA receptor encephalitis. SNIPR alert! Making T cells more precise killers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1