Precise Preparation of Size-Uniform Two-Dimensional Platelet Micelles Through Crystallization-Assisted Rapid Microphase Separation Using All-Bottlebrush-Type Block Copolymers with Crystalline Side Chains
{"title":"Precise Preparation of Size-Uniform Two-Dimensional Platelet Micelles Through Crystallization-Assisted Rapid Microphase Separation Using All-Bottlebrush-Type Block Copolymers with Crystalline Side Chains","authors":"Xiaoliang Yu, Yuanjian Fang, Zhiruo Luo, Xingjian Guo, Lulu Fu, Zhi Fan, Jin Zhao, Hongxiang Xie, Minjie Guo, Bowen Cheng","doi":"10.1021/jacs.4c16546","DOIUrl":null,"url":null,"abstract":"Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates. In this study, a series of all-bottlebrush-type block copolymers, poly(octadecyl acrylate)-<i>block</i>-poly(oligoethylene glycol methyl ether methacrylate)s are prepared by living polymerization. Driven by the synergistic crystallization of crystalline side chains and the rapid microphase separation of bottlebrush topology, these polymers can assemble into uniform 2D circular platelet micelles in a few minutes, without being affected by a high assembly concentration. In this process, epitaxial growth of the bottlebrush molecules proceeds with rigid cylindrical molecular conformation at the micelle crystallization sites and eventually provides a sandwich-type micelle according to a head-to-head stacking mode. This is explained as a “crystallization-assisted rapid microphase separation” mechanism. The micelle structures are affected by the assembly solvent and temperature, the size of which shows a linear dependence on the assembly temperature below the melting point of the crystalline block, which can be used to precisely control the morphology of these 2D platelets. This study establishes an efficient and rapid method to prepare 2D polymer nanosoft materials, which are promising candidates for further development, preparation, and application of various nanomaterials.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"66 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16546","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates. In this study, a series of all-bottlebrush-type block copolymers, poly(octadecyl acrylate)-block-poly(oligoethylene glycol methyl ether methacrylate)s are prepared by living polymerization. Driven by the synergistic crystallization of crystalline side chains and the rapid microphase separation of bottlebrush topology, these polymers can assemble into uniform 2D circular platelet micelles in a few minutes, without being affected by a high assembly concentration. In this process, epitaxial growth of the bottlebrush molecules proceeds with rigid cylindrical molecular conformation at the micelle crystallization sites and eventually provides a sandwich-type micelle according to a head-to-head stacking mode. This is explained as a “crystallization-assisted rapid microphase separation” mechanism. The micelle structures are affected by the assembly solvent and temperature, the size of which shows a linear dependence on the assembly temperature below the melting point of the crystalline block, which can be used to precisely control the morphology of these 2D platelets. This study establishes an efficient and rapid method to prepare 2D polymer nanosoft materials, which are promising candidates for further development, preparation, and application of various nanomaterials.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.