Impact of Canadian wildfires on aerosol and ice clouds in the early-autumn Arctic

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Research Pub Date : 2024-12-24 DOI:10.1016/j.atmosres.2024.107893
Kazutoshi Sato, Kazu Takahashi, Jun Inoue
{"title":"Impact of Canadian wildfires on aerosol and ice clouds in the early-autumn Arctic","authors":"Kazutoshi Sato, Kazu Takahashi, Jun Inoue","doi":"10.1016/j.atmosres.2024.107893","DOIUrl":null,"url":null,"abstract":"Cloud particle phase is an important controlling factor for the Earth's surface heat budget, through the radiative balance. Thus, it exerts a strong influence on climate change in the Arctic. Aerosols transported from lower latitudes modify Arctic cloud properties, including cloud phase. In this study, we investigated ice cloud formation and high aerosol concentrations over the Arctic Ocean using a combination of observations obtained by an Arctic voyage, reanalysis data, and backward trajectory analyses. On 12 September 2023, in an atmospheric river over the Arctic Ocean, ice clouds at temperatures warmer than −15 °C were observed in the middle troposphere by a Cloud Particle Sensor sonde. In the lower troposphere, a particle counter onboard a drone detected particle counts two orders of magnitude higher than the voyage average. Backward trajectories indicated that a lower tropospheric air mass with a high concentration of organic carbon (OC) aerosols over northern and coastal western Canada, where wildfire-induced OC emissions were evident, reached the mid-troposphere over the Arctic Ocean. These results suggest that OC aerosols from severe Canadian wildfires in the summer of 2023 acted as ice-nucleating particles for ice cloud formation under high-temperature conditions exceeding −15 °C over the Arctic Ocean.","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"72 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.atmosres.2024.107893","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud particle phase is an important controlling factor for the Earth's surface heat budget, through the radiative balance. Thus, it exerts a strong influence on climate change in the Arctic. Aerosols transported from lower latitudes modify Arctic cloud properties, including cloud phase. In this study, we investigated ice cloud formation and high aerosol concentrations over the Arctic Ocean using a combination of observations obtained by an Arctic voyage, reanalysis data, and backward trajectory analyses. On 12 September 2023, in an atmospheric river over the Arctic Ocean, ice clouds at temperatures warmer than −15 °C were observed in the middle troposphere by a Cloud Particle Sensor sonde. In the lower troposphere, a particle counter onboard a drone detected particle counts two orders of magnitude higher than the voyage average. Backward trajectories indicated that a lower tropospheric air mass with a high concentration of organic carbon (OC) aerosols over northern and coastal western Canada, where wildfire-induced OC emissions were evident, reached the mid-troposphere over the Arctic Ocean. These results suggest that OC aerosols from severe Canadian wildfires in the summer of 2023 acted as ice-nucleating particles for ice cloud formation under high-temperature conditions exceeding −15 °C over the Arctic Ocean.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
期刊最新文献
Spatiotemporal evolution patterns of flood-causing rainstorm events in China from a 3D perspective Multi criteria evaluation of downscaled CMIP6 models in predicting precipitation extremes Why have extreme low-temperature events in northern Asia strengthened since the turn of the 21st century? Understanding equilibrium climate sensitivity changes from CMIP5 to CMIP6: Feedback, AMOC, and precipitation responses Tornadic environments in Mexico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1