{"title":"Impact of Canadian wildfires on aerosol and ice clouds in the early-autumn Arctic","authors":"Kazutoshi Sato, Kazu Takahashi, Jun Inoue","doi":"10.1016/j.atmosres.2024.107893","DOIUrl":null,"url":null,"abstract":"Cloud particle phase is an important controlling factor for the Earth's surface heat budget, through the radiative balance. Thus, it exerts a strong influence on climate change in the Arctic. Aerosols transported from lower latitudes modify Arctic cloud properties, including cloud phase. In this study, we investigated ice cloud formation and high aerosol concentrations over the Arctic Ocean using a combination of observations obtained by an Arctic voyage, reanalysis data, and backward trajectory analyses. On 12 September 2023, in an atmospheric river over the Arctic Ocean, ice clouds at temperatures warmer than −15 °C were observed in the middle troposphere by a Cloud Particle Sensor sonde. In the lower troposphere, a particle counter onboard a drone detected particle counts two orders of magnitude higher than the voyage average. Backward trajectories indicated that a lower tropospheric air mass with a high concentration of organic carbon (OC) aerosols over northern and coastal western Canada, where wildfire-induced OC emissions were evident, reached the mid-troposphere over the Arctic Ocean. These results suggest that OC aerosols from severe Canadian wildfires in the summer of 2023 acted as ice-nucleating particles for ice cloud formation under high-temperature conditions exceeding −15 °C over the Arctic Ocean.","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"72 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.atmosres.2024.107893","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud particle phase is an important controlling factor for the Earth's surface heat budget, through the radiative balance. Thus, it exerts a strong influence on climate change in the Arctic. Aerosols transported from lower latitudes modify Arctic cloud properties, including cloud phase. In this study, we investigated ice cloud formation and high aerosol concentrations over the Arctic Ocean using a combination of observations obtained by an Arctic voyage, reanalysis data, and backward trajectory analyses. On 12 September 2023, in an atmospheric river over the Arctic Ocean, ice clouds at temperatures warmer than −15 °C were observed in the middle troposphere by a Cloud Particle Sensor sonde. In the lower troposphere, a particle counter onboard a drone detected particle counts two orders of magnitude higher than the voyage average. Backward trajectories indicated that a lower tropospheric air mass with a high concentration of organic carbon (OC) aerosols over northern and coastal western Canada, where wildfire-induced OC emissions were evident, reached the mid-troposphere over the Arctic Ocean. These results suggest that OC aerosols from severe Canadian wildfires in the summer of 2023 acted as ice-nucleating particles for ice cloud formation under high-temperature conditions exceeding −15 °C over the Arctic Ocean.
期刊介绍:
The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.