Privacy-Preserving Personalized Decentralized Learning With Fast Convergence

IF 4.3 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Consumer Electronics Pub Date : 2024-10-07 DOI:10.1109/TCE.2024.3475370
Jing Qiao;Zhenzhen Xie;Zhigao Zheng;Xiao Zhang;Zhenyu Zhang;Qun Zhang;Dongxiao Yu
{"title":"Privacy-Preserving Personalized Decentralized Learning With Fast Convergence","authors":"Jing Qiao;Zhenzhen Xie;Zhigao Zheng;Xiao Zhang;Zhenyu Zhang;Qun Zhang;Dongxiao Yu","doi":"10.1109/TCE.2024.3475370","DOIUrl":null,"url":null,"abstract":"Personalized decentralized learning aims to train individual personalized models for each client to adapt to Non-IID data distributions and heterogeneous environments. However, the distributed nature of decentralized learning is insufficient for protecting client training data from gradient leakage danger. In this paper, we investigate a \n<underline>p</u>\nrivacy-preserving \n<underline>p</u>\nersonalized \n<underline>d</u>\necentralized \n<underline>l</u>\nearning optimization mechanism instead of traditional SGD. We design the P2DL mechanism to optimize our proposed objective function, whereby adjusting the regularization term parameter for a resilient local-global trade-off. Instead of exchanging gradients or models, auxiliary variables with knowledge can be transferred among clients to avoid model inversion and reconstruction attacks. We also provide theoretical convergence guarantees for both synchronous and asynchronous settings. Particularly, in case of synchronous communication, its convergence rate \n<inline-formula> <tex-math>$\\mathcal {O}\\left ({{{}\\frac {1}{k}}}\\right)$ </tex-math></inline-formula>\n matches with the optimal result in decentralized learning, where k is the number of communication rounds. Extensive experiments are conducted to verify the effectiveness of newly proposed P2DL comparing with the state of the arts.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"70 4","pages":"6618-6629"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10706834/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Personalized decentralized learning aims to train individual personalized models for each client to adapt to Non-IID data distributions and heterogeneous environments. However, the distributed nature of decentralized learning is insufficient for protecting client training data from gradient leakage danger. In this paper, we investigate a p rivacy-preserving p ersonalized d ecentralized l earning optimization mechanism instead of traditional SGD. We design the P2DL mechanism to optimize our proposed objective function, whereby adjusting the regularization term parameter for a resilient local-global trade-off. Instead of exchanging gradients or models, auxiliary variables with knowledge can be transferred among clients to avoid model inversion and reconstruction attacks. We also provide theoretical convergence guarantees for both synchronous and asynchronous settings. Particularly, in case of synchronous communication, its convergence rate $\mathcal {O}\left ({{{}\frac {1}{k}}}\right)$ matches with the optimal result in decentralized learning, where k is the number of communication rounds. Extensive experiments are conducted to verify the effectiveness of newly proposed P2DL comparing with the state of the arts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有快速收敛性的隐私保护个性化分散学习
个性化分散学习旨在为每个客户端训练个性化模型,以适应非iid数据分布和异构环境。然而,分散学习的分布式特性不足以保护客户端训练数据免受梯度泄漏的危险。在本文中,我们研究了一种保护隐私的个性化分散学习优化机制来代替传统的SGD。我们设计了P2DL机制来优化我们提出的目标函数,通过调整正则化项参数来实现弹性局部全局权衡。不需要交换梯度或模型,而是在客户端之间传递具有知识的辅助变量,避免模型反演和重构攻击。我们还提供了同步和异步设置的理论收敛保证。特别是在同步通信的情况下,其收敛速度$\mathcal {O}\left ({{{}\frac {1}{k}}}\right)$与分散学习的最优结果相匹配,k为通信轮数。进行了大量的实验来验证新提出的P2DL与现有技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
期刊最新文献
Table of Contents Guest Editorial Consumer-Driven Energy-Efficient WSNs Architecture for Personalization and Contextualization in E-Commerce Systems IEEE Consumer Technology Society Officers and Committee Chairs Energy-Efficient Secure Architecture For Personalization E-Commerce WSN IEEE Consumer Technology Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1