Decision Making and Control of Autonomous Vehicles Under the Condition of Front Vehicle Sideslip

Jian Chen;Yunfeng Xiang;Yugong Luo;Keqiang Li;Xiaomin Lian
{"title":"Decision Making and Control of Autonomous Vehicles Under the Condition of Front Vehicle Sideslip","authors":"Jian Chen;Yunfeng Xiang;Yugong Luo;Keqiang Li;Xiaomin Lian","doi":"10.26599/JICV.2023.9210044","DOIUrl":null,"url":null,"abstract":"The behaviors of front vehicles are important factors that can influence the driving safety of autonomous vehicles on highways. This situation poses a serious threat to the security of autonomous vehicles, especially when front vehicle sideslip occurs. To address this problem, a decision-making approach can be used to promote the emergency obstacle avoidance capability of autonomous vehicles. First, the front sideslip vehicle trajectory was predicted by the kinematic models Constant Acceleration (CA), Constant Turn Rate and Velocity (CTRV), and Constant Turn Rate and Acceleration (CTRA) based on the front vehicle sideslip identification results. The CTRA prediction approach is chosen by comparing the prediction errors of the three models. To enhance the obstacle avoidance ability of autonomous vehicles, a novel trajectory planning method based on a driving characteristic vector is proposed. Model prediction control (MPC) is used to track the planned trajectory. Finally, the cosimulation platform of Simulink and Carsim was built. The simulation results show that autonomous vehicles can avoid collisions with front sideslip vehicles through the proposed approach, and the proposed trajectory planning approach has better obstacle avoidance ability than does the traditional approach.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 4","pages":"248-257"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10823098","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Connected Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10823098/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The behaviors of front vehicles are important factors that can influence the driving safety of autonomous vehicles on highways. This situation poses a serious threat to the security of autonomous vehicles, especially when front vehicle sideslip occurs. To address this problem, a decision-making approach can be used to promote the emergency obstacle avoidance capability of autonomous vehicles. First, the front sideslip vehicle trajectory was predicted by the kinematic models Constant Acceleration (CA), Constant Turn Rate and Velocity (CTRV), and Constant Turn Rate and Acceleration (CTRA) based on the front vehicle sideslip identification results. The CTRA prediction approach is chosen by comparing the prediction errors of the three models. To enhance the obstacle avoidance ability of autonomous vehicles, a novel trajectory planning method based on a driving characteristic vector is proposed. Model prediction control (MPC) is used to track the planned trajectory. Finally, the cosimulation platform of Simulink and Carsim was built. The simulation results show that autonomous vehicles can avoid collisions with front sideslip vehicles through the proposed approach, and the proposed trajectory planning approach has better obstacle avoidance ability than does the traditional approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Contents Advancements and Prospects in Multisensor Fusion for Autonomous Driving Extracting Networkwide Road Segment Location, Direction, and Turning Movement Rules From Global Positioning System Vehicle Trajectory Data for Macrosimulation Decision Making and Control of Autonomous Vehicles Under the Condition of Front Vehicle Sideslip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1