Comparison of a Series of 68Ga-Labeled DOTA-LLP2A Conjugates for Positron Emission Tomography Imaging of Very Late Antigen-4 in Melanoma.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Pharmaceutics Pub Date : 2025-01-03 DOI:10.1021/acs.molpharmaceut.4c01204
Peng Zhou, Yujing Wu, Guoqing Han, Juntao Jiang, Hongyong Wang, Chunxiong Lu, Yaling Liu, Jun Wu, Pei Zou, Hao Wu
{"title":"Comparison of a Series of <sup>68</sup>Ga-Labeled DOTA-LLP2A Conjugates for Positron Emission Tomography Imaging of Very Late Antigen-4 in Melanoma.","authors":"Peng Zhou, Yujing Wu, Guoqing Han, Juntao Jiang, Hongyong Wang, Chunxiong Lu, Yaling Liu, Jun Wu, Pei Zou, Hao Wu","doi":"10.1021/acs.molpharmaceut.4c01204","DOIUrl":null,"url":null,"abstract":"<p><p>Melanoma, with its steadily rising global incidence, is characterized by high invasiveness, leading to poor prognosis in advanced stages. There remains an unmet clinical need for the development of radiolabeled PET imaging probes for the early diagnosis of melanoma. Integrin VLA-4, a key factor in melanoma metastasis, presents a promising protein target to address the specificity shortcomings of existing probes in melanoma imaging. This study evaluates <sup>68</sup>Ga-labeled DOTA-LLP2A PET probes for melanoma imaging by modifying different carboxyl sites and employing various polyethylene glycol (PEG) linkers based on the structure of the high-affinity ligand LLP2A for VLA-4. The ligand intermediates LLP2A-NH<sub>2</sub> and LLP2A(<i>t</i>Bu)-OH, as well as their conjugates (probe precursors), were synthesized via solid-phase synthesis. The specificity and cytotoxicity of the probes were assessed in VLA-4-positive B16F10 cells and VLA-4-negative A375 cells. Targeting efficacy of the probes in B16F10 and A375 xenograft models was compared through PET imaging and biodistribution studies. VLA-4 expression in tissues was evaluated via immunofluorescence, while H&E staining was employed to assess the safety profile of the probes. The probe ([<sup>68</sup>Ga]Ga-T-CH) modified at the Aminocyclohexane carboxylic acid (Ach) exhibited greater signal accumulation in B16F10 melanoma (3.90 ± 0.43%ID/g at 1 h) compared to the 2-aminoadipic acid (Aad) side-chain-modified probe ([<sup>68</sup>Ga]Ga-T-AD) (1.43 ± 0.23%ID/g at 1 h). PET images of the three PEG conjugates derived from the Ach demonstrated bright tumor signals and low background noise, showing a progressive increase in tumor signal intensity from [<sup>68</sup>Ga]Ga-T6 to [<sup>68</sup>Ga]Ga-T4 and [<sup>68</sup>Ga]Ga-T2. Tumor uptake, tumor-to-muscle ratio, and tumor-to-blood ratio from biodistribution were significantly higher for [<sup>68</sup>Ga]Ga-T2 than for [<sup>68</sup>Ga]Ga-T4 and [<sup>68</sup>Ga]Ga-T6 (tumor: 3.58 ± 0.28 vs 2.90 ± 0.16 vs 1.87 ± 0.22%ID/g at 1 h; tumor/muscle: 13.38 ± 0.43 vs 10.62 ± 0.70 vs 7.19 ± 1.15 at 1 h; tumor/blood: 8.64 ± 1.12 vs 5.32 ± 0.91 vs 4.36 ± 0.59 at 1 h; <i>P</i> < 0.05). These data suggest that the series of PEG derivatives [<sup>68</sup>Ga]Ga-T2, [<sup>68</sup>Ga]Ga-T4, and [<sup>68</sup>Ga]Ga-T6, linked at the Ach site, are excellent <sup>68</sup>Ga-labeled probes for melanoma and other potential VLA-4-positive tumors. Among them, [<sup>68</sup>Ga]Ga-T2 shows the highest tumor-to-background contrast for melanoma, positioning it as the most promising candidate for clinical translation.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01204","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Melanoma, with its steadily rising global incidence, is characterized by high invasiveness, leading to poor prognosis in advanced stages. There remains an unmet clinical need for the development of radiolabeled PET imaging probes for the early diagnosis of melanoma. Integrin VLA-4, a key factor in melanoma metastasis, presents a promising protein target to address the specificity shortcomings of existing probes in melanoma imaging. This study evaluates 68Ga-labeled DOTA-LLP2A PET probes for melanoma imaging by modifying different carboxyl sites and employing various polyethylene glycol (PEG) linkers based on the structure of the high-affinity ligand LLP2A for VLA-4. The ligand intermediates LLP2A-NH2 and LLP2A(tBu)-OH, as well as their conjugates (probe precursors), were synthesized via solid-phase synthesis. The specificity and cytotoxicity of the probes were assessed in VLA-4-positive B16F10 cells and VLA-4-negative A375 cells. Targeting efficacy of the probes in B16F10 and A375 xenograft models was compared through PET imaging and biodistribution studies. VLA-4 expression in tissues was evaluated via immunofluorescence, while H&E staining was employed to assess the safety profile of the probes. The probe ([68Ga]Ga-T-CH) modified at the Aminocyclohexane carboxylic acid (Ach) exhibited greater signal accumulation in B16F10 melanoma (3.90 ± 0.43%ID/g at 1 h) compared to the 2-aminoadipic acid (Aad) side-chain-modified probe ([68Ga]Ga-T-AD) (1.43 ± 0.23%ID/g at 1 h). PET images of the three PEG conjugates derived from the Ach demonstrated bright tumor signals and low background noise, showing a progressive increase in tumor signal intensity from [68Ga]Ga-T6 to [68Ga]Ga-T4 and [68Ga]Ga-T2. Tumor uptake, tumor-to-muscle ratio, and tumor-to-blood ratio from biodistribution were significantly higher for [68Ga]Ga-T2 than for [68Ga]Ga-T4 and [68Ga]Ga-T6 (tumor: 3.58 ± 0.28 vs 2.90 ± 0.16 vs 1.87 ± 0.22%ID/g at 1 h; tumor/muscle: 13.38 ± 0.43 vs 10.62 ± 0.70 vs 7.19 ± 1.15 at 1 h; tumor/blood: 8.64 ± 1.12 vs 5.32 ± 0.91 vs 4.36 ± 0.59 at 1 h; P < 0.05). These data suggest that the series of PEG derivatives [68Ga]Ga-T2, [68Ga]Ga-T4, and [68Ga]Ga-T6, linked at the Ach site, are excellent 68Ga-labeled probes for melanoma and other potential VLA-4-positive tumors. Among them, [68Ga]Ga-T2 shows the highest tumor-to-background contrast for melanoma, positioning it as the most promising candidate for clinical translation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
期刊最新文献
Aqueous Solubility of Sodium and Chloride Salts of Glycine─"Uncommon" Common-Ion Effects of Self-Titrating Solids. Novel Ru(II) Complexes as Type-I/-II Photosensitizers for Multimodal Hypoxia-Tolerant Chemo-Photodynamic/Immune Therapy. Comparison of a Series of 68Ga-Labeled DOTA-LLP2A Conjugates for Positron Emission Tomography Imaging of Very Late Antigen-4 in Melanoma. Subcutaneous Administration of Therapeutic Monoclonal Antibody Drug Products Using a Syringe in Blinded Clinical Trials: Advances and Key Aspects Related to Blinding/Matching/Masking Strategies for Placebo Formulation. Nanosystems at Nexus: Navigating Nose-to-Brain Delivery for Glioblastoma Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1