Dual-Driven Activation of High-Valence States in Prussian Blue Analogues Via Graphene-Quantum Dots and Ozone-Induced Surface Restructuring for Superior Hydrogen Evolution Electrocatalyst.
{"title":"Dual-Driven Activation of High-Valence States in Prussian Blue Analogues Via Graphene-Quantum Dots and Ozone-Induced Surface Restructuring for Superior Hydrogen Evolution Electrocatalyst.","authors":"Angelina Melanita Tarigan, Mia Rinawati, Sofiannisa Aulia, Ling-Yu Chang, Chia-Yu Chang, Wei-Nien Su, Shu-Chih Haw, Wei-Hsiang Huang, Heru Setyawan, Min-Hsin Yeh","doi":"10.1002/smtd.202401708","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical water splitting is a pivotal process for sustainable hydrogen energy production, relying on efficient hydrogen evolution reaction (HER) catalysts, particularly in acidic environments, where both high activity and durability are crucial. Despite the favorable kinetics of platinum (Pt)-based materials, their performance is hindered under harsh conditions, driving the search for alternatives. Due to their unique structural characteristic, Prussian blue analogs (PBAs) emerge as attractive candidates for designing efficient HER electrocatalysts. However, modulating their properties and functionalities is crucial to overcome their conductivity issue. Herein, a reconfiguration strategy for the dual-driven surface restructuring of the CoFe PBA involving graphene quantum dots (GQD) and UV/ozone is proposed. X-ray absorption spectroscopy (XAS) analysis revealed that dual-driven reconstruction plays a pivotal role in promoting the high-valence metal ions, effectively reducing charge transfer resistance-a key limitation in HER. The optimized CoFe PBA/GQD-UV exhibits remarkable electrocatalytic performance toward HER, with a low overpotential of 77 mV to reach a current density of 10 mA cm<sup>-2</sup> with excellent durability for 12 h under an extremely high current density of 500 mA cm<sup>-2</sup> in an acidic solution. This dual-combination strategy offering a new pathway to develop highly active electrocatalysts.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401708"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401708","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical water splitting is a pivotal process for sustainable hydrogen energy production, relying on efficient hydrogen evolution reaction (HER) catalysts, particularly in acidic environments, where both high activity and durability are crucial. Despite the favorable kinetics of platinum (Pt)-based materials, their performance is hindered under harsh conditions, driving the search for alternatives. Due to their unique structural characteristic, Prussian blue analogs (PBAs) emerge as attractive candidates for designing efficient HER electrocatalysts. However, modulating their properties and functionalities is crucial to overcome their conductivity issue. Herein, a reconfiguration strategy for the dual-driven surface restructuring of the CoFe PBA involving graphene quantum dots (GQD) and UV/ozone is proposed. X-ray absorption spectroscopy (XAS) analysis revealed that dual-driven reconstruction plays a pivotal role in promoting the high-valence metal ions, effectively reducing charge transfer resistance-a key limitation in HER. The optimized CoFe PBA/GQD-UV exhibits remarkable electrocatalytic performance toward HER, with a low overpotential of 77 mV to reach a current density of 10 mA cm-2 with excellent durability for 12 h under an extremely high current density of 500 mA cm-2 in an acidic solution. This dual-combination strategy offering a new pathway to develop highly active electrocatalysts.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.