Bone Health and Physical Activity - The Complex Mechanism.

IF 7 2区 医学 Q1 GERIATRICS & GERONTOLOGY Aging and Disease Pub Date : 2024-12-30 DOI:10.14336/AD.2024.1316
Alicja Nowak, Małgorzata Ogurkowska
{"title":"Bone Health and Physical Activity - The Complex Mechanism.","authors":"Alicja Nowak, Małgorzata Ogurkowska","doi":"10.14336/AD.2024.1316","DOIUrl":null,"url":null,"abstract":"<p><p>This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines). The presence of insulin receptors and glucose transporters in osteoblasts indicates that these cells consume large amounts of glucose. Therefore, when energy demand during physical activity increases, nutritional factors play an important role in bone response. On the other hand, the musculoskeletal system participates in the regulation of energy metabolism. To maintain bone homeostasis, an optimized form of physical activity should be used (e.g. intensity, duration, training session frequency). The complexity of factors modulating the sensitivity of bones to mechanical stimuli causes the results of physical training are age- and sex-dependent. Moreover, when selecting exercises to improve bone health, it is important to take into account metabolic and musculoskeletal system conditions. In addition, exercise should be safe and adapted to the health and fitness level so as not to increase the risk of fractures. Participation in regular physical activity should continue after the training program to maintain bone mass.</p>","PeriodicalId":7434,"journal":{"name":"Aging and Disease","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14336/AD.2024.1316","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines). The presence of insulin receptors and glucose transporters in osteoblasts indicates that these cells consume large amounts of glucose. Therefore, when energy demand during physical activity increases, nutritional factors play an important role in bone response. On the other hand, the musculoskeletal system participates in the regulation of energy metabolism. To maintain bone homeostasis, an optimized form of physical activity should be used (e.g. intensity, duration, training session frequency). The complexity of factors modulating the sensitivity of bones to mechanical stimuli causes the results of physical training are age- and sex-dependent. Moreover, when selecting exercises to improve bone health, it is important to take into account metabolic and musculoskeletal system conditions. In addition, exercise should be safe and adapted to the health and fitness level so as not to increase the risk of fractures. Participation in regular physical activity should continue after the training program to maintain bone mass.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨骼健康和身体活动-复杂的机制。
本文综述了体育活动在维持肌肉骨骼系统正常功能中的作用和机制。骨对机械环境的适应发生在骨骼区域,这些骨骼区域受到由运动性质引起的最大应力,然而,骨组织对机械负荷的反应是不同的,这取决于其材料和结构特性(小梁和皮质)。体育锻炼过程中骨组织代谢的调节受机械应力相关因素(重力、冲击负荷和肌肉收缩)以及全身机制(激素、肌因子、细胞因子)的影响。成骨细胞中胰岛素受体和葡萄糖转运体的存在表明这些细胞消耗大量的葡萄糖。因此,当体力活动中的能量需求增加时,营养因子在骨骼反应中起重要作用。另一方面,肌肉骨骼系统参与能量代谢的调节。为了维持骨骼稳态,应该使用一种优化的体育活动形式(例如强度、持续时间、训练频率)。调节骨骼对机械刺激敏感性的因素非常复杂,这导致体能训练的结果与年龄和性别有关。此外,在选择改善骨骼健康的运动时,重要的是要考虑到代谢和肌肉骨骼系统的状况。此外,运动要安全,要与健康和体能水平相适应,以免增加骨折的风险。在训练计划结束后,应继续参加有规律的体育活动,以保持骨量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aging and Disease
Aging and Disease GERIATRICS & GERONTOLOGY-
CiteScore
14.60
自引率
2.70%
发文量
138
审稿时长
10 weeks
期刊介绍: Aging & Disease (A&D) is an open-access online journal dedicated to publishing groundbreaking research on the biology of aging, the pathophysiology of age-related diseases, and innovative therapies for conditions affecting the elderly. The scope encompasses various diseases such as Stroke, Alzheimer's disease, Parkinson’s disease, Epilepsy, Dementia, Depression, Cardiovascular Disease, Cancer, Arthritis, Cataract, Osteoporosis, Diabetes, and Hypertension. The journal welcomes studies involving animal models as well as human tissues or cells.
期刊最新文献
Deformability of Heterogeneous Red Blood Cells in Aging and Related Pathologies. NR1D1 Inhibition Enhances Autophagy and Mitophagy in Alzheimer's Disease Models. Chronic Cerebral Deterioration - A Comprehensive View of Old-Age Cerebral Deterioration. Physical Prehabilitation for Older Patients with Cancer before Complex Medical-Surgical Interventions: An Umbrella Review. Pros and Cons of Human Brain Organoids to Study Alzheimer's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1