Assessing the 10/66 Dementia Classification Algorithm for International Comparative Analyses with the U.S.

IF 5 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH American journal of epidemiology Pub Date : 2024-12-26 DOI:10.1093/aje/kwae470
Jorge J Llibre Guerra, Jordan Weiss, Jing Li, Chris Soria, Ana Rodriguez-Salgado, Juan de Jesús Llibre Rodriguez, Ivonne Z Jiménez Velázquez, Daisy Acosta, Mao-Mei Liu, William H Dow
{"title":"Assessing the 10/66 Dementia Classification Algorithm for International Comparative Analyses with the U.S.","authors":"Jorge J Llibre Guerra, Jordan Weiss, Jing Li, Chris Soria, Ana Rodriguez-Salgado, Juan de Jesús Llibre Rodriguez, Ivonne Z Jiménez Velázquez, Daisy Acosta, Mao-Mei Liu, William H Dow","doi":"10.1093/aje/kwae470","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-national comparisons of dementia prevalence are essential for identifying unique determinants and cultural-specific risk factors, but methodological differences in dementia classification across countries hinder global comparisons. This study maps the 10/66 algorithm for dementia classification, widely used and validated in low- and middle-income countries (LMICs), to the U.S. Aging, Demographics, and Memory Study (ADAMS), the dementia sub-study of the Health and Retirement Study, and assesses its performance in ADAMS. We identified the subset of 10/66 algorithm items comparably measured in ADAMS, then used these items to re-train the 10/66 algorithm against the ADAMS clinical dementia diagnosis, employing k-fold cross-validation to assess performance. We compared the modified 10/66 algorithm to four other dementia classification algorithms previously validated in ADAMS, both for overall dementia estimation as well as for estimating education gradients. The modified 10/66 algorithm had higher sensitivity (87%) and specificity (93%) than the comparison algorithms. All of the algorithms over-estimated the education gradient in dementia, although the modest ADAMS sample size precludes precise comparisons of education gradient accuracy. Overall, we found that the modified 10/66 algorithm performs well in classifying dementia status in the U.S. Our results support the validity of risk factor comparisons between U.S. and 10/66 LMIC dementia datasets.</p>","PeriodicalId":7472,"journal":{"name":"American journal of epidemiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/aje/kwae470","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-national comparisons of dementia prevalence are essential for identifying unique determinants and cultural-specific risk factors, but methodological differences in dementia classification across countries hinder global comparisons. This study maps the 10/66 algorithm for dementia classification, widely used and validated in low- and middle-income countries (LMICs), to the U.S. Aging, Demographics, and Memory Study (ADAMS), the dementia sub-study of the Health and Retirement Study, and assesses its performance in ADAMS. We identified the subset of 10/66 algorithm items comparably measured in ADAMS, then used these items to re-train the 10/66 algorithm against the ADAMS clinical dementia diagnosis, employing k-fold cross-validation to assess performance. We compared the modified 10/66 algorithm to four other dementia classification algorithms previously validated in ADAMS, both for overall dementia estimation as well as for estimating education gradients. The modified 10/66 algorithm had higher sensitivity (87%) and specificity (93%) than the comparison algorithms. All of the algorithms over-estimated the education gradient in dementia, although the modest ADAMS sample size precludes precise comparisons of education gradient accuracy. Overall, we found that the modified 10/66 algorithm performs well in classifying dementia status in the U.S. Our results support the validity of risk factor comparisons between U.S. and 10/66 LMIC dementia datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
10/66痴呆分类算法与美国的国际比较分析
痴呆患病率的跨国比较对于确定独特的决定因素和特定文化的风险因素至关重要,但各国在痴呆分类方面的方法差异阻碍了全球比较。本研究将在低收入和中等收入国家(LMICs)广泛使用和验证的10/66痴呆分类算法映射到美国老龄化、人口统计和记忆研究(ADAMS),即健康与退休研究的痴呆子研究,并评估其在ADAMS中的表现。我们确定了在ADAMS中可比较测量的10/66算法项目子集,然后使用这些项目针对ADAMS临床痴呆诊断重新训练10/66算法,采用k-fold交叉验证来评估性能。我们将改进的10/66算法与先前在ADAMS中验证的其他四种痴呆症分类算法进行了比较,无论是对总体痴呆症的估计还是对教育梯度的估计。改进后的10/66算法的敏感性(87%)和特异性(93%)均高于对照算法。所有的算法都高估了痴呆症的教育梯度,尽管适度的ADAMS样本量排除了教育梯度准确性的精确比较。总体而言,我们发现改进的10/66算法在美国的痴呆状态分类方面表现良好。我们的结果支持美国和10/66 LMIC痴呆数据集之间风险因素比较的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American journal of epidemiology
American journal of epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
7.40
自引率
4.00%
发文量
221
审稿时长
3-6 weeks
期刊介绍: The American Journal of Epidemiology is the oldest and one of the premier epidemiologic journals devoted to the publication of empirical research findings, opinion pieces, and methodological developments in the field of epidemiologic research. It is a peer-reviewed journal aimed at both fellow epidemiologists and those who use epidemiologic data, including public health workers and clinicians.
期刊最新文献
Exacerbation of racial disparities in COVID-19 outcomes by Alzheimer's Disease and Related Dementias among nursing home residents. Comparison of trends in CPS reports of child maltreatment and child maltreatment-related mortality across time, place and race/ethnicity. Estimating the Observability of an Outcome from an Electronic Health Records Dataset Using External Data. Identifying critical windows of susceptibility to perinatal lead exposure on child serum vaccine antibody levels. Re: Estimation of opioid misuse prevalence in New York State counties, 2007-2018. A Bayesian spatio-temporal abundance model approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1