Jorge J Llibre Guerra, Jordan Weiss, Jing Li, Chris Soria, Ana Rodriguez-Salgado, Juan de Jesús Llibre Rodriguez, Ivonne Z Jiménez Velázquez, Daisy Acosta, Mao-Mei Liu, William H Dow
{"title":"Assessing the 10/66 Dementia Classification Algorithm for International Comparative Analyses with the U.S.","authors":"Jorge J Llibre Guerra, Jordan Weiss, Jing Li, Chris Soria, Ana Rodriguez-Salgado, Juan de Jesús Llibre Rodriguez, Ivonne Z Jiménez Velázquez, Daisy Acosta, Mao-Mei Liu, William H Dow","doi":"10.1093/aje/kwae470","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-national comparisons of dementia prevalence are essential for identifying unique determinants and cultural-specific risk factors, but methodological differences in dementia classification across countries hinder global comparisons. This study maps the 10/66 algorithm for dementia classification, widely used and validated in low- and middle-income countries (LMICs), to the U.S. Aging, Demographics, and Memory Study (ADAMS), the dementia sub-study of the Health and Retirement Study, and assesses its performance in ADAMS. We identified the subset of 10/66 algorithm items comparably measured in ADAMS, then used these items to re-train the 10/66 algorithm against the ADAMS clinical dementia diagnosis, employing k-fold cross-validation to assess performance. We compared the modified 10/66 algorithm to four other dementia classification algorithms previously validated in ADAMS, both for overall dementia estimation as well as for estimating education gradients. The modified 10/66 algorithm had higher sensitivity (87%) and specificity (93%) than the comparison algorithms. All of the algorithms over-estimated the education gradient in dementia, although the modest ADAMS sample size precludes precise comparisons of education gradient accuracy. Overall, we found that the modified 10/66 algorithm performs well in classifying dementia status in the U.S. Our results support the validity of risk factor comparisons between U.S. and 10/66 LMIC dementia datasets.</p>","PeriodicalId":7472,"journal":{"name":"American journal of epidemiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/aje/kwae470","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-national comparisons of dementia prevalence are essential for identifying unique determinants and cultural-specific risk factors, but methodological differences in dementia classification across countries hinder global comparisons. This study maps the 10/66 algorithm for dementia classification, widely used and validated in low- and middle-income countries (LMICs), to the U.S. Aging, Demographics, and Memory Study (ADAMS), the dementia sub-study of the Health and Retirement Study, and assesses its performance in ADAMS. We identified the subset of 10/66 algorithm items comparably measured in ADAMS, then used these items to re-train the 10/66 algorithm against the ADAMS clinical dementia diagnosis, employing k-fold cross-validation to assess performance. We compared the modified 10/66 algorithm to four other dementia classification algorithms previously validated in ADAMS, both for overall dementia estimation as well as for estimating education gradients. The modified 10/66 algorithm had higher sensitivity (87%) and specificity (93%) than the comparison algorithms. All of the algorithms over-estimated the education gradient in dementia, although the modest ADAMS sample size precludes precise comparisons of education gradient accuracy. Overall, we found that the modified 10/66 algorithm performs well in classifying dementia status in the U.S. Our results support the validity of risk factor comparisons between U.S. and 10/66 LMIC dementia datasets.
期刊介绍:
The American Journal of Epidemiology is the oldest and one of the premier epidemiologic journals devoted to the publication of empirical research findings, opinion pieces, and methodological developments in the field of epidemiologic research.
It is a peer-reviewed journal aimed at both fellow epidemiologists and those who use epidemiologic data, including public health workers and clinicians.