Identification of the Pharmacological Components and Its Targets of Sanghuang by Integration of Nontarget Metabolomics and Network Pharmacology Analysis.
{"title":"Identification of the Pharmacological Components and Its Targets of Sanghuang by Integration of Nontarget Metabolomics and Network Pharmacology Analysis.","authors":"Hengqian Lu, Jintao Zhang, Yongzhong Wang","doi":"10.1002/bmc.6066","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study is to comprehensively to identify the core pharmacological components and their respective targets of three medicinal fungi Sanghuangs including Sanghuangporus vaninii (SV), Sanghuangporus lonicericola (SL), and Inonotus hispidus (IH). Metabolomics analysis indicated that a total of 495 and 660 differential metabolites were obtained in mycelium and fermentation broth samples among three Sanghuangs, respectively. The network pharmacology analysis showed that 6-[1]-ladderane hexanol, R-nostrenol, candidone, ellagic acid, and quercetin were the overlapping active ingredients of three Sanghuang species for diabetes mellitus, immune system disease, and neoplasm. Certonardosterol A, dalamid, and ethylene brassylate are unique active ingredients in SV, and certonardosterol K, kaempferide, and esculetin are unique active ingredients in SL. Asbestinine, neoandrographolide, isosakuranetin, and daucosterin are unique active ingredients in IH. Accordingly, the common core targets of active ingredients of the three Sanghuangs were ESR1, PIK3CA, and LYN. PRKCA, EGFR, and STAT3 were the unique targets of SV, SL, and IH, respectively. The primary active components and their respective targets, in addition to the component-target interaction of Sanghuangs that have been identified in the present study, provide a foundation for future research on the prevention and treatment of disease using Sanghuangs.</p>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"39 2","pages":"e6066"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/bmc.6066","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study is to comprehensively to identify the core pharmacological components and their respective targets of three medicinal fungi Sanghuangs including Sanghuangporus vaninii (SV), Sanghuangporus lonicericola (SL), and Inonotus hispidus (IH). Metabolomics analysis indicated that a total of 495 and 660 differential metabolites were obtained in mycelium and fermentation broth samples among three Sanghuangs, respectively. The network pharmacology analysis showed that 6-[1]-ladderane hexanol, R-nostrenol, candidone, ellagic acid, and quercetin were the overlapping active ingredients of three Sanghuang species for diabetes mellitus, immune system disease, and neoplasm. Certonardosterol A, dalamid, and ethylene brassylate are unique active ingredients in SV, and certonardosterol K, kaempferide, and esculetin are unique active ingredients in SL. Asbestinine, neoandrographolide, isosakuranetin, and daucosterin are unique active ingredients in IH. Accordingly, the common core targets of active ingredients of the three Sanghuangs were ESR1, PIK3CA, and LYN. PRKCA, EGFR, and STAT3 were the unique targets of SV, SL, and IH, respectively. The primary active components and their respective targets, in addition to the component-target interaction of Sanghuangs that have been identified in the present study, provide a foundation for future research on the prevention and treatment of disease using Sanghuangs.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.