Aging in a weighted ensemble of excitable and self-oscillatory neurons: The role of pairwise and higher-order interactions.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0247769
Amit Sharma, Biswambhar Rakshit, Kazuyuki Aihara
{"title":"Aging in a weighted ensemble of excitable and self-oscillatory neurons: The role of pairwise and higher-order interactions.","authors":"Amit Sharma, Biswambhar Rakshit, Kazuyuki Aihara","doi":"10.1063/5.0247769","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the aging transition in networks of excitable and self-oscillatory units as the fraction of inherently excitable units increases. Two network topologies are considered: a scale-free network with weighted pairwise interactions and a two-dimensional simplicial complex with weighted scale-free pairwise and triadic interactions. Without triadic interactions, the aging transition from collective oscillations to oscillation death (inhomogeneous stationary states) can occur either suddenly or through an intermediate state of partial oscillation. However, when triadic interactions are present, the network becomes less resilient, and the transition occurs without partial oscillation at any coupling strength. Furthermore, we observe the presence of inhomogeneous steady states within the complete oscillation death regime, regardless of the network interaction models.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0247769","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the aging transition in networks of excitable and self-oscillatory units as the fraction of inherently excitable units increases. Two network topologies are considered: a scale-free network with weighted pairwise interactions and a two-dimensional simplicial complex with weighted scale-free pairwise and triadic interactions. Without triadic interactions, the aging transition from collective oscillations to oscillation death (inhomogeneous stationary states) can occur either suddenly or through an intermediate state of partial oscillation. However, when triadic interactions are present, the network becomes less resilient, and the transition occurs without partial oscillation at any coupling strength. Furthermore, we observe the presence of inhomogeneous steady states within the complete oscillation death regime, regardless of the network interaction models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可兴奋和自振荡神经元加权集合中的衰老:成对和高阶相互作用的作用。
我们研究了当固有可激单元的比例增加时,可激和自激单元网络中的老化转变。考虑了两种网络拓扑:具有加权两两相互作用的无标度网络和具有加权无标度两两和三元相互作用的二维简单复合体。如果没有三元相互作用,从集体振荡到振荡死亡(非均匀平稳状态)的老化转变可能突然发生,也可能通过部分振荡的中间状态发生。然而,当存在三元相互作用时,网络变得不那么有弹性,并且在任何耦合强度下都不会发生部分振荡。此外,无论网络相互作用模型如何,我们观察到在完全振荡死亡区存在非均匀稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
期刊最新文献
Continuum limit of the adaptive Kuramoto model. Directed recurrence networks for the analysis of nonlinear and complex dynamical systems. Evolution modeling and control of networked dynamic games with event-triggering mechanism. Koopman learning with episodic memory. Symbolic dynamics of joint brain states during dyadic coordination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1