Hongyun Yang, Yu Xie, Zhi Lin, Lin Li, Xiang Chen, Wanlin Feng, Honglin Ran, Li He
{"title":"Experimental research on remote non-contact laser vibration measurement for tunnel lining cavities.","authors":"Hongyun Yang, Yu Xie, Zhi Lin, Lin Li, Xiang Chen, Wanlin Feng, Honglin Ran, Li He","doi":"10.1038/s41598-024-83819-0","DOIUrl":null,"url":null,"abstract":"<p><p>The lining cavities in tunnels have strong concealment and pose significant risks, seriously affecting tunnel operational safety. Therefore, it is necessary to develop efficient and high-precision detection techniques for tunnel lining cavities. In this study, concrete slabs with different parameter cavities were selected as the research object, and experiments on remote detection using Laser Doppler Vibrometry were conducted. During the experiments, the vibration parameters of the concrete surface were measured for cavities of varying sizes and depths, filled with different materials, and under different detection distance conditions. The vibration differences between the defective and healthy parts were analyzed using the spatial spectral entropy algorithm. The results showed that for cavities with side lengths of 200mm, depths of 50mm, and filled with hollow wooden boxes, the maximum velocity amplitudes of the surface concrete were 10.68, 3.55, and 4.01 times higher than those of the healthy parts, respectively. Moreover, at the same frequency, larger cavity areas and shallower depths resulted in greater surface vibration amplitudes. The vibration amplitudes of the surface with hollow wooden box filling were higher than those with foam polystyrene board filling. With increasing detection distance, the overall surface vibration velocity of the cavities was higher at a distance of 3 m from the laser probe compared to 5 m, indicating the ability to quantitatively describe the apparent vibration characteristics of concrete cavities under different parameters. This study demonstrates the significant effectiveness of laser Doppler vibrometry in remote detection of lining cavities in tunnels.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"105"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-83819-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The lining cavities in tunnels have strong concealment and pose significant risks, seriously affecting tunnel operational safety. Therefore, it is necessary to develop efficient and high-precision detection techniques for tunnel lining cavities. In this study, concrete slabs with different parameter cavities were selected as the research object, and experiments on remote detection using Laser Doppler Vibrometry were conducted. During the experiments, the vibration parameters of the concrete surface were measured for cavities of varying sizes and depths, filled with different materials, and under different detection distance conditions. The vibration differences between the defective and healthy parts were analyzed using the spatial spectral entropy algorithm. The results showed that for cavities with side lengths of 200mm, depths of 50mm, and filled with hollow wooden boxes, the maximum velocity amplitudes of the surface concrete were 10.68, 3.55, and 4.01 times higher than those of the healthy parts, respectively. Moreover, at the same frequency, larger cavity areas and shallower depths resulted in greater surface vibration amplitudes. The vibration amplitudes of the surface with hollow wooden box filling were higher than those with foam polystyrene board filling. With increasing detection distance, the overall surface vibration velocity of the cavities was higher at a distance of 3 m from the laser probe compared to 5 m, indicating the ability to quantitatively describe the apparent vibration characteristics of concrete cavities under different parameters. This study demonstrates the significant effectiveness of laser Doppler vibrometry in remote detection of lining cavities in tunnels.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.