Multimaterial cryogenic printing of three-dimensional soft hydrogel machines.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-02 DOI:10.1038/s41467-024-55323-6
Jinhao Li, Jie Cao, Rong Bian, Rongtai Wan, Xiangyang Zhu, Baoyang Lu, Guoying Gu
{"title":"Multimaterial cryogenic printing of three-dimensional soft hydrogel machines.","authors":"Jinhao Li, Jie Cao, Rong Bian, Rongtai Wan, Xiangyang Zhu, Baoyang Lu, Guoying Gu","doi":"10.1038/s41467-024-55323-6","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogel-based soft machines are promising in diverse applications, such as biomedical electronics and soft robotics. However, current fabrication techniques generally struggle to construct multimaterial three-dimensional hydrogel architectures for soft machines and robots, owing to the inherent hydrogel softness from the low-density polymer network nature. Herein, we present a multimaterial cryogenic printing (MCP) technique that can fabricate sophisticated soft hydrogel machines with accurate yet complex architectures and robust multimaterial interfaces. Our MCP technique harnesses a universal all-in-cryogenic solvent phase transition strategy, involving instant ink solidification followed by in-situ synchronous solvent melting and cross-linking. We, therefore, can facilely fabricate various multimaterial 3D hydrogel structures with high aspect ratio complex geometries (overhanging, thin-walled, and hollow) in high fidelity. Using this approach, we design and manufacture all-printed all-hydrogel soft machines with versatile functions, such as self-sensing biomimetic heart valves with leaflet-status perception and untethered multimode turbine robots capable of in-tube blockage removal and transportation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"185"},"PeriodicalIF":15.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55323-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogel-based soft machines are promising in diverse applications, such as biomedical electronics and soft robotics. However, current fabrication techniques generally struggle to construct multimaterial three-dimensional hydrogel architectures for soft machines and robots, owing to the inherent hydrogel softness from the low-density polymer network nature. Herein, we present a multimaterial cryogenic printing (MCP) technique that can fabricate sophisticated soft hydrogel machines with accurate yet complex architectures and robust multimaterial interfaces. Our MCP technique harnesses a universal all-in-cryogenic solvent phase transition strategy, involving instant ink solidification followed by in-situ synchronous solvent melting and cross-linking. We, therefore, can facilely fabricate various multimaterial 3D hydrogel structures with high aspect ratio complex geometries (overhanging, thin-walled, and hollow) in high fidelity. Using this approach, we design and manufacture all-printed all-hydrogel soft machines with versatile functions, such as self-sensing biomimetic heart valves with leaflet-status perception and untethered multimode turbine robots capable of in-tube blockage removal and transportation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维软水凝胶多材料低温打印机。
基于水凝胶的软体机器在生物医学电子和软体机器人等各种应用中都很有前景。然而,由于低密度聚合物网络性质固有的水凝胶柔软性,目前的制造技术通常难以为软体机器和机器人构建多材料三维水凝胶结构。在此,我们提出了一种多材料低温打印(MCP)技术,该技术可以制造具有精确而复杂的结构和坚固的多材料界面的复杂软水凝胶机器。我们的MCP技术利用了一种通用的全低温溶剂相变策略,包括即时油墨凝固,随后是原位同步溶剂熔化和交联。因此,我们可以很容易地以高保真度制造具有高纵横比复杂几何形状(悬垂,薄壁和空心)的各种多材料3D水凝胶结构。利用这种方法,我们设计和制造了具有多种功能的全打印全水凝胶软机器,例如具有叶片状态感知的自我传感仿生心脏瓣膜,以及能够清除和运输管内堵塞的无系绳多模式涡轮机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
Glutaraldehyde (GA)
阿拉丁
Sodium alginate (SA)
阿拉丁
Chitosan
阿拉丁
Calcium chloride (CaCl2)
阿拉丁
Dimethyl sulfoxide (DMSO)
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Computational whole-body-exposome models for global precision brain health. Revealing heterogeneity and damage response in the adult human utricle. Direct imaging of residual oxygen disorder in an infinite-layer nickelate superlattice via multislice ptychography. Linguistic features of AI mis/disinformation and the detection limits of LLMs. Engineering microbial consortia for mixed plastic upcycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1