Isolation and screening of wood-decaying fungi for lignocellulolytic enzyme production and bioremediation processes.

IF 2.1 Q3 MYCOLOGY Frontiers in fungal biology Pub Date : 2024-12-19 eCollection Date: 2024-01-01 DOI:10.3389/ffunb.2024.1494182
Anna Civzele, Linda Mezule
{"title":"Isolation and screening of wood-decaying fungi for lignocellulolytic enzyme production and bioremediation processes.","authors":"Anna Civzele, Linda Mezule","doi":"10.3389/ffunb.2024.1494182","DOIUrl":null,"url":null,"abstract":"<p><p>The growing demand for novel enzyme producers to meet industrial and environmental needs has driven interest in lignocellulose-degrading fungi. In this study, lignocellulolytic enzyme production capabilities of environmental fungal isolates collected from boreal coniferous and nemoral summer green deciduous forests were investigated, using Congo Red, ABTS, and Azure B as indicators of cellulolytic and ligninolytic enzyme productions. Through qualitative and quantitative assays, the study aimed to identify promising species for lignocellulose-degrading enzyme secretion and assess their potential for biotechnological applications. Primary screening tests showed intensive enzyme secretion by certain isolates, particularly white rot fungi identified as <i>Trametes pubescens</i> and <i>Cerrena unicolor</i>. These fungi exhibited high efficiency in degrading Congo Red and Azure B. The isolates achieved up to a 93.30% decrease in Congo Red induced color intensity and over 78% decolorization of Azure B within 168 hours. Within 336 hours, these fungi reached nearly 99% removal of Congo Red and up to 99.79% decolorization of Azure B. Enzyme activity analysis confirmed the lignin-degrading capabilities of <i>T. pubescens</i>, which exhibited laccase activity exceeding 208 U/mL. Furthermore, <i>Fomitopsis pinicola</i> showed the highest cellulose-degrading potential among the studied fungi, achieving cellulase activity over 107 U/L during Congo Red decolorization. Previously undescribed enzyme-producing species, such as <i>Peniophora cinerea</i>, <i>Phacidium subcorticalis</i>, and <i>Cladosporium pseudocladosporioides</i>, also demonstrated promising lignocellulolytic enzyme production potential, achieving up to 98.65% and 99.80% decolorization of Congo Red and Azure B, respectively. The study demonstrates novel candidates for efficient lignocellulolytic enzyme production with broad biotechnological applications such as biomass conversion, wastewater treatment, textile dye and other complex chemical removal, and environmental remediation.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"5 ","pages":"1494182"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693747/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in fungal biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffunb.2024.1494182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for novel enzyme producers to meet industrial and environmental needs has driven interest in lignocellulose-degrading fungi. In this study, lignocellulolytic enzyme production capabilities of environmental fungal isolates collected from boreal coniferous and nemoral summer green deciduous forests were investigated, using Congo Red, ABTS, and Azure B as indicators of cellulolytic and ligninolytic enzyme productions. Through qualitative and quantitative assays, the study aimed to identify promising species for lignocellulose-degrading enzyme secretion and assess their potential for biotechnological applications. Primary screening tests showed intensive enzyme secretion by certain isolates, particularly white rot fungi identified as Trametes pubescens and Cerrena unicolor. These fungi exhibited high efficiency in degrading Congo Red and Azure B. The isolates achieved up to a 93.30% decrease in Congo Red induced color intensity and over 78% decolorization of Azure B within 168 hours. Within 336 hours, these fungi reached nearly 99% removal of Congo Red and up to 99.79% decolorization of Azure B. Enzyme activity analysis confirmed the lignin-degrading capabilities of T. pubescens, which exhibited laccase activity exceeding 208 U/mL. Furthermore, Fomitopsis pinicola showed the highest cellulose-degrading potential among the studied fungi, achieving cellulase activity over 107 U/L during Congo Red decolorization. Previously undescribed enzyme-producing species, such as Peniophora cinerea, Phacidium subcorticalis, and Cladosporium pseudocladosporioides, also demonstrated promising lignocellulolytic enzyme production potential, achieving up to 98.65% and 99.80% decolorization of Congo Red and Azure B, respectively. The study demonstrates novel candidates for efficient lignocellulolytic enzyme production with broad biotechnological applications such as biomass conversion, wastewater treatment, textile dye and other complex chemical removal, and environmental remediation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
木质纤维素酶生产和生物修复过程中木材腐烂真菌的分离筛选。
为了满足工业和环境需求,对新型酶生产商的需求不断增长,这推动了人们对木质纤维素降解真菌的兴趣。本研究以刚果红、ABTS和Azure B作为纤维素酶和木质素酶产量的指标,研究了从北方针叶林和热带夏季绿色落叶林中采集的环境真菌分离株的产木质纤维素酶能力。通过定性和定量分析,本研究旨在鉴定有潜力分泌木质纤维素降解酶的物种,并评估其生物技术应用潜力。初步筛选试验显示,某些菌株分泌大量的酶,特别是白腐真菌,被鉴定为短毛蕊白腐菌和单色白腐菌。这些真菌对刚果红和天青B具有较高的降解效率。在168小时内,分离菌株的刚果红诱导色强降低了93.30%,天青B脱色率超过78%。在336小时内,这些真菌对刚果红的去除率接近99%,对Azure b的脱色率高达99.79%。酶活性分析证实了T. pubescens的木质素降解能力,其漆酶活性超过208 U/mL。此外,在研究的真菌中,pinicola Fomitopsis显示出最高的纤维素降解潜力,在刚果红脱色过程中纤维素酶活性超过107 U/L。先前描述的产酶物种,如Peniophora cinerea, Phacidium subcorticalis和Cladosporium pseudocladosporioides,也显示出有希望的木质纤维素水解酶生产潜力,分别实现高达98.65%和99.80%的刚果红和天青B的脱色。该研究展示了高效木质纤维素水解酶生产的新候选物,具有广泛的生物技术应用,如生物质转化、废水处理、纺织染料和其他复杂化学去除以及环境修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Editorial: Fungal virulence. Isolation and screening of wood-decaying fungi for lignocellulolytic enzyme production and bioremediation processes. Minimal domain peptides derived from enterocins exhibit potent antifungal activity. Advancements in lipid production research using the koji-mold Aspergillus oryzae and future outlook. Morphological variations and adhesive distribution: a cross-species examination in Colletotrichum conidia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1