Panther: Practical Secure Two-Party Neural Network Inference

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2025-01-03 DOI:10.1109/TIFS.2025.3526063
Jun Feng;Yefan Wu;Hong Sun;Shunli Zhang;Debin Liu
{"title":"Panther: Practical Secure Two-Party Neural Network Inference","authors":"Jun Feng;Yefan Wu;Hong Sun;Shunli Zhang;Debin Liu","doi":"10.1109/TIFS.2025.3526063","DOIUrl":null,"url":null,"abstract":"Secure two-party neural network (2P-NN) inference allows the server with a neural network model and the client with inputs to perform neural network inference without revealing their private data to each other. However, the state-of-the-art 2P-NN inference still suffers from large computation and communication overhead especially when used in ImageNet-scale deep neural networks. In this work, we design and build Panther, a lightweight and efficient secure 2P-NN inference system, which has great efficiency in evaluating 2P-NN inference while safeguarding the privacy of the server and the client. At the core of Panther, we have new protocols for 2P-NN inference. Firstly, we propose a customized homomorphic encryption scheme to reduce burdensome polynomial multiplications in the homomorphic encryption arithmetic circuit of linear protocols. Secondly, we present a more efficient and communication concise design for the millionaires’ protocol, which enables non-linear protocols with less communication cost. Our evaluations over three sought-after varying-scale deep neural networks show that Panther outperforms the state-of-the-art 2P-NN inference systems in terms of end-to-end runtime and communication overhead. Panther achieves state-of-the-art performance with up to <inline-formula> <tex-math>$24.95\\times $ </tex-math></inline-formula> speedup for linear protocols and <inline-formula> <tex-math>$6.40 \\times $ </tex-math></inline-formula> speedup for non-linear protocols in WAN when compared to prior arts.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"1149-1162"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10824864/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Secure two-party neural network (2P-NN) inference allows the server with a neural network model and the client with inputs to perform neural network inference without revealing their private data to each other. However, the state-of-the-art 2P-NN inference still suffers from large computation and communication overhead especially when used in ImageNet-scale deep neural networks. In this work, we design and build Panther, a lightweight and efficient secure 2P-NN inference system, which has great efficiency in evaluating 2P-NN inference while safeguarding the privacy of the server and the client. At the core of Panther, we have new protocols for 2P-NN inference. Firstly, we propose a customized homomorphic encryption scheme to reduce burdensome polynomial multiplications in the homomorphic encryption arithmetic circuit of linear protocols. Secondly, we present a more efficient and communication concise design for the millionaires’ protocol, which enables non-linear protocols with less communication cost. Our evaluations over three sought-after varying-scale deep neural networks show that Panther outperforms the state-of-the-art 2P-NN inference systems in terms of end-to-end runtime and communication overhead. Panther achieves state-of-the-art performance with up to $24.95\times $ speedup for linear protocols and $6.40 \times $ speedup for non-linear protocols in WAN when compared to prior arts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
豹:实用的安全两方神经网络推理
安全的两方神经网络(2P-NN)推理允许具有神经网络模型的服务器和具有输入的客户端在不泄露彼此私有数据的情况下执行神经网络推理。然而,最先进的2P-NN推理仍然存在大量的计算和通信开销,特别是在imagenet规模的深度神经网络中使用时。在这项工作中,我们设计并构建了一个轻量级,高效的安全2P-NN推理系统Panther,该系统在评估2P-NN推理方面具有很高的效率,同时保护了服务器和客户端的隐私。在Panther的核心,我们有新的p2p - nn推理协议。首先,我们提出了一种自定义的同态加密方案,以减少线性协议同态加密算法电路中繁琐的多项式乘法。其次,我们提出了一种更高效和通信简洁的百万富翁协议设计,使非线性协议具有更低的通信成本。我们对三个广受欢迎的不同规模深度神经网络的评估表明,Panther在端到端运行时间和通信开销方面优于最先进的2P-NN推理系统。与现有技术相比,Panther实现了最先进的性能,线性协议加速高达24.95美元,WAN中的非线性协议加速高达6.40美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
Kullback-Liebler Divergence-Based Observer Design Against Sensor Bias Injection Attacks in Single-Output Systems Efficient and Privacy-Preserving Ride Matching Over Road Networks Against Malicious ORH Server Secrecy Coding for the Binary Symmetric Wiretap Channel via Linear Programming Reliable Open-Set Network Traffic Classification Achieving Positive Rate of Covert Communications Covered by Randomly Activated Overt Users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1