Intent-Guided Bilateral Long and Short-Term Information Mining With Contrastive Learning for Sequential Recommendation

IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Services Computing Pub Date : 2025-01-03 DOI:10.1109/TSC.2024.3520868
Junhui Niu;Wei Zhou;Fengji Luo;Yihao Zhang;Jun Zeng;Junhao Wen
{"title":"Intent-Guided Bilateral Long and Short-Term Information Mining With Contrastive Learning for Sequential Recommendation","authors":"Junhui Niu;Wei Zhou;Fengji Luo;Yihao Zhang;Jun Zeng;Junhao Wen","doi":"10.1109/TSC.2024.3520868","DOIUrl":null,"url":null,"abstract":"The current sequential recommendation systems mainly focus on mining information related to users to make personalized recommendations. However, there are two subjects in the user historical interaction sequence: users and items. We believe that mining sequence information only from the users’ perspective is limited, ignoring effective information from the perspective of items, which is not conducive to alleviating the data sparsity problem. To explore potential links between items and use them for recommendation, we propose Intent-guided Bilateral Long and Short-Term Information Mining with Contrastive Learning for Sequential Recommendation (IBLSRec), which interpretively integrates three kinds of information mined from the sequence: user preferences, user intentions, and potential relationships between items. Specifically, we model the potential relationships between interactive items from a long-term and short-term perspective. The short-term relationship between items is regarded as noise; the long-term relationship between items is regarded as a stable common relationship and integrated with the user's personalized preferences. In addition, user intent is used to guide the modeling of user preferences to refine the representation of user preferences further. A large number of experiments on four real data sets validate the superiority of our model.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 1","pages":"212-225"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10820829/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The current sequential recommendation systems mainly focus on mining information related to users to make personalized recommendations. However, there are two subjects in the user historical interaction sequence: users and items. We believe that mining sequence information only from the users’ perspective is limited, ignoring effective information from the perspective of items, which is not conducive to alleviating the data sparsity problem. To explore potential links between items and use them for recommendation, we propose Intent-guided Bilateral Long and Short-Term Information Mining with Contrastive Learning for Sequential Recommendation (IBLSRec), which interpretively integrates three kinds of information mined from the sequence: user preferences, user intentions, and potential relationships between items. Specifically, we model the potential relationships between interactive items from a long-term and short-term perspective. The short-term relationship between items is regarded as noise; the long-term relationship between items is regarded as a stable common relationship and integrated with the user's personalized preferences. In addition, user intent is used to guide the modeling of user preferences to refine the representation of user preferences further. A large number of experiments on four real data sets validate the superiority of our model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
意向引导下的双向长短期信息挖掘与序列推荐的对比学习
目前的顺序推荐系统主要是挖掘与用户相关的信息,进行个性化推荐。但是,在用户历史交互序列中有两个主体:用户和项。我们认为仅从用户的角度挖掘序列信息是有限的,忽略了从项目的角度挖掘有效信息,不利于缓解数据稀疏性问题。为了探索项目之间的潜在联系并将其用于推荐,我们提出了意向引导的双边长短期信息挖掘与序列推荐的对比学习(IBLSRec),它解释地集成了从序列中挖掘的三种信息:用户偏好、用户意图和项目之间的潜在关系。具体来说,我们从长期和短期的角度对互动项目之间的潜在关系进行建模。项目之间的短期关系被视为噪声;项目之间的长期关系被视为一种稳定的共同关系,并与用户的个性化偏好相结合。此外,使用用户意图来指导用户偏好的建模,以进一步细化用户偏好的表示。在四个真实数据集上进行的大量实验验证了该模型的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Services Computing
IEEE Transactions on Services Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
11.50
自引率
6.20%
发文量
278
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.
期刊最新文献
Kafka-Thor: A Kafka-based In-Edge Data Streaming Platform for Enhanced V2X Services PeerSync: Accelerating Containerized Model Inference at the Network Edge SMAUG: Semantic-Enhanced Mobile App Usage Data Generation With LLM AC-BaaS: An Asynchronous Cross-Blockchain as a Service for the Internet of Things Efficient and Fault Tolerant Data Stream Processing With Uncertain Data Rates in Serverless Edge Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1