{"title":"Rational Design and Controlled Synthesis of MOF-Derived Single-Atom Catalysts","authors":"Weibin Chen, Bingbing Ma, Ruqiang Zou","doi":"10.1021/accountsmr.4c00330","DOIUrl":null,"url":null,"abstract":"Single-atom catalysts (SACs) represent a transformative advancement in heterogeneous catalysis, offering unparalleled opportunities for maximizing atomic efficiency and enhancing performance. SACs are characterized by isolated metal atoms uniformly dispersed on suitable supports, ensuring each metal atom serves as an independent catalytic site. This dispersion mitigates metal atom aggregation, a common issue in conventional nanocatalysts, thus enabling superior activity, selectivity, and stability. Metal–organic frameworks (MOFs) have emerged as an ideal platform for SAC synthesis due to their structural diversity, tunable coordination environments, and high surface areas. MOFs provide well-defined coordination sites that facilitate the precise stabilization of single metal atoms, presenting significant advantages over traditional supports like metal oxides and metal materials. Carbonization of MOFs yields MOF-derived carbon materials that retain key structural characteristics while offering enhanced electrical conductivity and stability, making them suitable for various catalytic applications.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"97 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-atom catalysts (SACs) represent a transformative advancement in heterogeneous catalysis, offering unparalleled opportunities for maximizing atomic efficiency and enhancing performance. SACs are characterized by isolated metal atoms uniformly dispersed on suitable supports, ensuring each metal atom serves as an independent catalytic site. This dispersion mitigates metal atom aggregation, a common issue in conventional nanocatalysts, thus enabling superior activity, selectivity, and stability. Metal–organic frameworks (MOFs) have emerged as an ideal platform for SAC synthesis due to their structural diversity, tunable coordination environments, and high surface areas. MOFs provide well-defined coordination sites that facilitate the precise stabilization of single metal atoms, presenting significant advantages over traditional supports like metal oxides and metal materials. Carbonization of MOFs yields MOF-derived carbon materials that retain key structural characteristics while offering enhanced electrical conductivity and stability, making them suitable for various catalytic applications.