AI-Based Discrimination of Faradaic Current against Nonfaradaic Current Inspired by Speech Denoising

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-01-04 DOI:10.1021/acs.analchem.4c04448
Long Duong Ha, Seongpil Hwang
{"title":"AI-Based Discrimination of Faradaic Current against Nonfaradaic Current Inspired by Speech Denoising","authors":"Long Duong Ha, Seongpil Hwang","doi":"10.1021/acs.analchem.4c04448","DOIUrl":null,"url":null,"abstract":"Cyclic voltammetry (CV) has been a powerful technique to provide impactful insights for electrochemical systems, including reaction mechanism, kinetics, diffusion coefficients, etc., in various fields of study, notably energy storage and energy conversion. However, the separation between the faradaic current component of CV and the nonfaradaic current contribution to extract useful information remains a major issue for researchers. Herein, we report a deep learning algorithm inspired by speech denoising that utilizes the theoretical faradaic current as a study target and predicts it from the overall current response from cyclic voltammograms. This deep neural network (DNN) is constructed from a series of fully connected layers, which apply a weight matrix to the inputs and transform it using an activation function to obtain the desired regression. Our model performed well with overall mean absolute percentage errors (MAPEs) of 6.36% between theoretical faradaic currents and the predicted responses from the total currents, with a peak position difference of 2.56 mV for anodic peaks and 2.44 mV for cathodic ones. Furthermore, the algorithm is also capable of extracting peak current values from experimental data with 3.37% MAPE and minimal peak position error (less than 0.75 mV). This innovative approach may be used as a tool to assist researchers in studying electrochemical systems using CV.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"37 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04448","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclic voltammetry (CV) has been a powerful technique to provide impactful insights for electrochemical systems, including reaction mechanism, kinetics, diffusion coefficients, etc., in various fields of study, notably energy storage and energy conversion. However, the separation between the faradaic current component of CV and the nonfaradaic current contribution to extract useful information remains a major issue for researchers. Herein, we report a deep learning algorithm inspired by speech denoising that utilizes the theoretical faradaic current as a study target and predicts it from the overall current response from cyclic voltammograms. This deep neural network (DNN) is constructed from a series of fully connected layers, which apply a weight matrix to the inputs and transform it using an activation function to obtain the desired regression. Our model performed well with overall mean absolute percentage errors (MAPEs) of 6.36% between theoretical faradaic currents and the predicted responses from the total currents, with a peak position difference of 2.56 mV for anodic peaks and 2.44 mV for cathodic ones. Furthermore, the algorithm is also capable of extracting peak current values from experimental data with 3.37% MAPE and minimal peak position error (less than 0.75 mV). This innovative approach may be used as a tool to assist researchers in studying electrochemical systems using CV.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Toward Automated Preprocessing of Untargeted LC-MS-Based Metabolomics Feature Lists from Human Biofluids Cyclic Voltarefractometry of Single TiO2 Nanoparticles in Large Ensembles in Nonaqueous Electrolyte Differential Diagnosis of Urinary Cancers by Surface-Enhanced Raman Spectroscopy and Machine Learning Surface Engineered Nanoparticles Coupled with Pattern Recognition Techniques for Rapid Identification and Discrimination of Multiple Thiols in a Real Sample Matrix Mercury(II)-Triggered Targeted and NIR-II Fluorescence/Photoacoustic Imaging Probe for High-Sensitivity Early Diagnosis and Evaluating Drug against Acute Liver and Kidney Injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1