Hiromasa Suzuki, Naomi Tsuji, Yoshiaki Kanemaru, Megumi Shidatsu, Laura Olivera-Nieto, Samar Safi-Harb, Shigeo S. Kimura, Eduardo de la Fuente, Sabrina Casanova, Kaya Mori, Xiaojie Wang, Sei Kato, Dai Tateishi, Hideki Uchiyama, Takaaki Tanaka, Hiroyuki Uchida, Shun Inoue, Dezhi Huang, Marianne Lemoine-Goumard, Daiki Miura, Shoji Ogawa, Shogo B. Kobayashi, Chris Done, Maxime Parra, Maria Díaz Trigo, Teo Muñoz-Darias, Montserrat Armas Padilla, Ryota Tomaru and Yoshihiro Ueda
{"title":"Detection of Extended X-Ray Emission around the PeVatron Microquasar V4641 Sgr with XRISM","authors":"Hiromasa Suzuki, Naomi Tsuji, Yoshiaki Kanemaru, Megumi Shidatsu, Laura Olivera-Nieto, Samar Safi-Harb, Shigeo S. Kimura, Eduardo de la Fuente, Sabrina Casanova, Kaya Mori, Xiaojie Wang, Sei Kato, Dai Tateishi, Hideki Uchiyama, Takaaki Tanaka, Hiroyuki Uchida, Shun Inoue, Dezhi Huang, Marianne Lemoine-Goumard, Daiki Miura, Shoji Ogawa, Shogo B. Kobayashi, Chris Done, Maxime Parra, Maria Díaz Trigo, Teo Muñoz-Darias, Montserrat Armas Padilla, Ryota Tomaru and Yoshihiro Ueda","doi":"10.3847/2041-8213/ad9d11","DOIUrl":null,"url":null,"abstract":"A recent report on the detection of very-high-energy gamma rays from V4641 Sagittarii (V4641 Sgr) up to ≈0.8 PeV has made it the second confirmed “PeVatron” microquasar. Here we report on the observation of V4641 Sgr with X-Ray Imaging and Spectroscopy Mission (XRISM) in 2024 September. Thanks to the large field of view and low background, the CCD imager Xtend successfully detected for the first time X-ray extended emission around V4641 Sgr with a significance of ≳4.5σ and >10σ based on our imaging and spectral analysis, respectively. The spatial extent is estimated to have a radius of 7′ ± 3′ (13 ± 5 pc at a distance of 6.2 kpc) assuming a Gaussian-like radial distribution, which suggests that the particle acceleration site is within ~10 pc of the microquasar. If the X-ray morphology traces the diffusion of accelerated electrons, this spatial extent can be explained by either an enhanced magnetic field (∼80 μG) or a suppressed diffusion coefficient (∼1027 cm2 s−1 at 100 TeV). The integrated X-ray flux, (4–6) × 10−12 erg s−1 cm−2 (2–10 keV), would require a magnetic field strength higher than the Galactic mean (≳8 μG) if the diffuse X-ray emission originates from synchrotron radiation and the gamma-ray emission is predominantly hadronic. If the X-rays are of thermal origin, the measured extension, temperature, and plasma density can be explained by a jet with a luminosity of ∼2 × 1039 erg s−1, which is comparable to the Eddington luminosity of this system.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad9d11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A recent report on the detection of very-high-energy gamma rays from V4641 Sagittarii (V4641 Sgr) up to ≈0.8 PeV has made it the second confirmed “PeVatron” microquasar. Here we report on the observation of V4641 Sgr with X-Ray Imaging and Spectroscopy Mission (XRISM) in 2024 September. Thanks to the large field of view and low background, the CCD imager Xtend successfully detected for the first time X-ray extended emission around V4641 Sgr with a significance of ≳4.5σ and >10σ based on our imaging and spectral analysis, respectively. The spatial extent is estimated to have a radius of 7′ ± 3′ (13 ± 5 pc at a distance of 6.2 kpc) assuming a Gaussian-like radial distribution, which suggests that the particle acceleration site is within ~10 pc of the microquasar. If the X-ray morphology traces the diffusion of accelerated electrons, this spatial extent can be explained by either an enhanced magnetic field (∼80 μG) or a suppressed diffusion coefficient (∼1027 cm2 s−1 at 100 TeV). The integrated X-ray flux, (4–6) × 10−12 erg s−1 cm−2 (2–10 keV), would require a magnetic field strength higher than the Galactic mean (≳8 μG) if the diffuse X-ray emission originates from synchrotron radiation and the gamma-ray emission is predominantly hadronic. If the X-rays are of thermal origin, the measured extension, temperature, and plasma density can be explained by a jet with a luminosity of ∼2 × 1039 erg s−1, which is comparable to the Eddington luminosity of this system.