Efficient micromirror confinement of sub-teraelectronvolt cosmic rays in galaxy clusters

IF 12.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Nature Astronomy Pub Date : 2025-01-03 DOI:10.1038/s41550-024-02442-1
Patrick Reichherzer, Archie F. A. Bott, Robert J. Ewart, Gianluca Gregori, Philipp Kempski, Matthew W. Kunz, Alexander A. Schekochihin
{"title":"Efficient micromirror confinement of sub-teraelectronvolt cosmic rays in galaxy clusters","authors":"Patrick Reichherzer, Archie F. A. Bott, Robert J. Ewart, Gianluca Gregori, Philipp Kempski, Matthew W. Kunz, Alexander A. Schekochihin","doi":"10.1038/s41550-024-02442-1","DOIUrl":null,"url":null,"abstract":"<p>Cosmic rays (CRs) play a pivotal role in shaping the thermal and dynamical properties of astrophysical environments, such as galaxies and galaxy clusters. Recent observations suggest a stronger confinement of CRs in certain astrophysical systems than predicted by current CR-transport theories. Here, we show that the incorporation of microscale physics into CR-transport models can account for this enhanced CR confinement. We develop a theoretical description of the effect of magnetic microscale fluctuations originating from the mirror instability on macroscopic CR diffusion. We confirm our theory with large-dynamical-range simulations of CR transport in the intracluster medium (ICM) of galaxy clusters and kinetic simulations of CR transport in micromirror fields. We conclude that sub-teraelectronvolt CR confinement in the ICM is far more effective than previously anticipated on the basis of Galactic-transport extrapolations. The transformative impact of micromirrors on CR diffusion provides insights into how microphysics can reciprocally affect macroscopic dynamics and observable structures across a range of astrophysical scales.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"5 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-024-02442-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cosmic rays (CRs) play a pivotal role in shaping the thermal and dynamical properties of astrophysical environments, such as galaxies and galaxy clusters. Recent observations suggest a stronger confinement of CRs in certain astrophysical systems than predicted by current CR-transport theories. Here, we show that the incorporation of microscale physics into CR-transport models can account for this enhanced CR confinement. We develop a theoretical description of the effect of magnetic microscale fluctuations originating from the mirror instability on macroscopic CR diffusion. We confirm our theory with large-dynamical-range simulations of CR transport in the intracluster medium (ICM) of galaxy clusters and kinetic simulations of CR transport in micromirror fields. We conclude that sub-teraelectronvolt CR confinement in the ICM is far more effective than previously anticipated on the basis of Galactic-transport extrapolations. The transformative impact of micromirrors on CR diffusion provides insights into how microphysics can reciprocally affect macroscopic dynamics and observable structures across a range of astrophysical scales.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
星系团中亚太电子伏特宇宙射线的高效微镜约束
宇宙射线(CR)在塑造星系和星系团等天体物理环境的热和动力学特性方面起着关键作用。最近的观测表明,在某些天体物理系统中,CR 的束缚比目前的 CR 传输理论所预测的更强。在这里,我们展示了将微尺度物理学纳入CR-传输模型可以解释这种增强的CR束缚。我们从理论上描述了源于镜像不稳定性的磁性微尺度波动对宏观 CR 扩散的影响。我们用星系团内介质(ICM)中的CR传输的大动态范围模拟和微镜场中CR传输的动力学模拟证实了我们的理论。我们的结论是,ICM 中亚太电子伏特的 CR 约束远比之前根据银河传输推断所预期的要有效得多。微镜对 CR 扩散的变革性影响让我们深入了解了微观物理是如何在一系列天体物理尺度上相互影响宏观动力学和可观测结构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Astronomy
Nature Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍: Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas. Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence. In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.
期刊最新文献
Astronomical image denoising by self-supervised deep learning and restoration processes Ribbons of dust in a supernova glow Packing a punch with paper packages Electrons fuelling chorus waves Coeval star formation in ultra diffuse galaxies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1