Zhen Miao, Jianqiao Wang, Kernyu Park, Da Kuang, Junhyong Kim
{"title":"Depth-corrected multi-factor dissection of chromatin accessibility for scATAC-seq data with PACS","authors":"Zhen Miao, Jianqiao Wang, Kernyu Park, Da Kuang, Junhyong Kim","doi":"10.1038/s41467-024-55580-5","DOIUrl":null,"url":null,"abstract":"<p>Single cell ATAC-seq (scATAC-seq) experimental designs have become increasingly complex, with multiple factors that might affect chromatin accessibility, including genotype, cell type, tissue of origin, sample location, batch, etc., whose compound effects are difficult to test by existing methods. In addition, current scATAC-seq data present statistical difficulties due to their sparsity and variations in individual sequence capture. To address these problems, we present a zero-adjusted statistical model, Probability model of Accessible Chromatin of Single cells (PACS), that allows complex hypothesis testing of accessibility-modulating factors while accounting for sparse and incomplete data. For differential accessibility analysis, PACS controls the false positive rate and achieves a 17% to 122% higher power on average than existing tools. We demonstrate the effectiveness of PACS through several analysis tasks, including supervised cell type annotation, compound hypothesis testing, batch effect correction, and spatiotemporal modeling. We apply PACS to datasets from various tissues and show its ability to reveal previously undiscovered insights in scATAC-seq data.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"98 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55580-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Single cell ATAC-seq (scATAC-seq) experimental designs have become increasingly complex, with multiple factors that might affect chromatin accessibility, including genotype, cell type, tissue of origin, sample location, batch, etc., whose compound effects are difficult to test by existing methods. In addition, current scATAC-seq data present statistical difficulties due to their sparsity and variations in individual sequence capture. To address these problems, we present a zero-adjusted statistical model, Probability model of Accessible Chromatin of Single cells (PACS), that allows complex hypothesis testing of accessibility-modulating factors while accounting for sparse and incomplete data. For differential accessibility analysis, PACS controls the false positive rate and achieves a 17% to 122% higher power on average than existing tools. We demonstrate the effectiveness of PACS through several analysis tasks, including supervised cell type annotation, compound hypothesis testing, batch effect correction, and spatiotemporal modeling. We apply PACS to datasets from various tissues and show its ability to reveal previously undiscovered insights in scATAC-seq data.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.