Mitchell E. Baum, John E. Sawyer, Emerson D. Nafziger, Michael J. Castellano, Marshall D. McDaniel, Mark A. Licht, Dermot J. Hayes, Matthew J. Helmers, Sotirios V. Archontoulis
{"title":"The optimum nitrogen fertilizer rate for maize in the US Midwest is increasing","authors":"Mitchell E. Baum, John E. Sawyer, Emerson D. Nafziger, Michael J. Castellano, Marshall D. McDaniel, Mark A. Licht, Dermot J. Hayes, Matthew J. Helmers, Sotirios V. Archontoulis","doi":"10.1038/s41467-024-55314-7","DOIUrl":null,"url":null,"abstract":"<p>Fertilizing maize at an optimum nitrogen rate is imperative to maximize productivity and sustainability. Using a combination of long-term (<i>n</i> = 379) and short-term (<i>n</i> = 176) experiments, we show that the economic optimum nitrogen rate for US maize production has increased by 2.7 kg N ha<sup>−1</sup> yr<sup>−1</sup> from 1991 to 2021 (1.2% per year) simultaneously with grain yields and nitrogen losses. By accounting for societal cost estimates for nitrogen losses, we estimate an environmental optimum rate, which has also increased over time but at a lower rate than the economic optimum nitrogen rate. Furthermore, we provide evidence that reducing rates from the economic to environmental optimum nitrogen rate could reduce US maize productivity by 6% while slightly reducing nitrogen losses. We call for enhanced assessments and predictability of the economic and environmental optimum nitrogen rate to meet rising maize production while avoiding unnecessary nitrogen losses.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"5 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55314-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fertilizing maize at an optimum nitrogen rate is imperative to maximize productivity and sustainability. Using a combination of long-term (n = 379) and short-term (n = 176) experiments, we show that the economic optimum nitrogen rate for US maize production has increased by 2.7 kg N ha−1 yr−1 from 1991 to 2021 (1.2% per year) simultaneously with grain yields and nitrogen losses. By accounting for societal cost estimates for nitrogen losses, we estimate an environmental optimum rate, which has also increased over time but at a lower rate than the economic optimum nitrogen rate. Furthermore, we provide evidence that reducing rates from the economic to environmental optimum nitrogen rate could reduce US maize productivity by 6% while slightly reducing nitrogen losses. We call for enhanced assessments and predictability of the economic and environmental optimum nitrogen rate to meet rising maize production while avoiding unnecessary nitrogen losses.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.