Calibration Matters: Prototype-Aware Diffusion for OCT Cervical Classification With Calibration

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-12-18 DOI:10.1109/LSP.2024.3520010
Yuxuan Xiong;Zhou Zhao;Yongchao Xu;Yan Zhang;Bo Du
{"title":"Calibration Matters: Prototype-Aware Diffusion for OCT Cervical Classification With Calibration","authors":"Yuxuan Xiong;Zhou Zhao;Yongchao Xu;Yan Zhang;Bo Du","doi":"10.1109/LSP.2024.3520010","DOIUrl":null,"url":null,"abstract":"Cervical optical coherence tomography (OCT) imaging serves as an effective diagnostic tool, and the development of deep learning classification models for OCT has the potential to enhance diagnosis. However, the complex imaging patterns of OCT data, significant noise, and the substantial domain gap from multi-center data result in high uncertainty and low accuracy in classification networks. To address these challenges, we propose a Multi-scale Prototype-Guided Diffusion learning method (MPGD), which is constructed with the \n<bold>Multi-scale Feature Condition (MFC)</b>\n, \n<bold>Diffusion-based Classification Calibrator (DCC)</b>\n, and \n<bold>Multi-scale Prototype Bank (MPB)</b>\n modules. Specifically, MFC provides initial classification based on multi-scale features, DCC calibrates MFC's classification results through a diffusion model, and MPB refines DCC's visual guidance using prototypes obtained from clustering. Extensive experiments demonstrate that MPGD outperforms widely-used competitors for cervical OCT image classification, showing excellent generalization performance.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"396-400"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10806844/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Cervical optical coherence tomography (OCT) imaging serves as an effective diagnostic tool, and the development of deep learning classification models for OCT has the potential to enhance diagnosis. However, the complex imaging patterns of OCT data, significant noise, and the substantial domain gap from multi-center data result in high uncertainty and low accuracy in classification networks. To address these challenges, we propose a Multi-scale Prototype-Guided Diffusion learning method (MPGD), which is constructed with the Multi-scale Feature Condition (MFC) , Diffusion-based Classification Calibrator (DCC) , and Multi-scale Prototype Bank (MPB) modules. Specifically, MFC provides initial classification based on multi-scale features, DCC calibrates MFC's classification results through a diffusion model, and MPB refines DCC's visual guidance using prototypes obtained from clustering. Extensive experiments demonstrate that MPGD outperforms widely-used competitors for cervical OCT image classification, showing excellent generalization performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
校正事项:有校正的OCT宫颈分类的原型感知扩散
子宫颈光学相干断层扫描(OCT)成像是一种有效的诊断工具,而OCT的深度学习分类模型的发展有可能增强诊断。然而,OCT数据复杂的成像模式、明显的噪声以及多中心数据的大量域间隙导致了分类网络的高不确定性和低准确率。为了解决这些挑战,我们提出了一种多尺度原型引导扩散学习方法(MPGD),该方法由多尺度特征条件(MFC)、基于扩散的分类校准器(DCC)和多尺度原型库(MPB)模块组成。具体来说,MFC提供基于多尺度特征的初始分类,DCC通过扩散模型校准MFC的分类结果,MPB使用聚类获得的原型来完善DCC的视觉引导。大量的实验表明,MPGD在宫颈OCT图像分类中优于广泛使用的竞争对手,具有出色的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Diffusion Generalized Minimum Total Error Entropy Algorithm FDDM: Frequency-Decomposed Diffusion Model for Dose Prediction in Radiotherapy Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition Conjugate Gradient and Variance Reduction Based Online ADMM for Low-Rank Distributed Networks Blind Light Field Image Quality Assessment via Frequency Domain Analysis and Auxiliary Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1