Stochastic Analysis of FxLMS Algorithm for Feedback Active Noise Control

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-12-11 DOI:10.1109/LSP.2024.3514792
Cong Wang;Ming Wu;Shuang Zhou;Jun Yang
{"title":"Stochastic Analysis of FxLMS Algorithm for Feedback Active Noise Control","authors":"Cong Wang;Ming Wu;Shuang Zhou;Jun Yang","doi":"10.1109/LSP.2024.3514792","DOIUrl":null,"url":null,"abstract":"Feedback active noise control (ANC) systems are effective in reducing predictable noise, e.g. periodic, narrowband and colored noise. There are still few studies on the theoretical analysis of feedback ANC systems, and are limited to idealized signals such as sinusoidal or Gaussian signals. This paper presents the stochastic analysis of a feedback ANC system based on the filtered-x least mean square (FxLMS) algorithm, which is not relying on a specific noise model and perfect secondary path. The equations for the mean and mean-square convergence behavior are derived. Extensive simulations of sinusoidal, band-limited white noise, and hybrid signals illustrate the accuracy of the analysis.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"416-420"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10787251/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Feedback active noise control (ANC) systems are effective in reducing predictable noise, e.g. periodic, narrowband and colored noise. There are still few studies on the theoretical analysis of feedback ANC systems, and are limited to idealized signals such as sinusoidal or Gaussian signals. This paper presents the stochastic analysis of a feedback ANC system based on the filtered-x least mean square (FxLMS) algorithm, which is not relying on a specific noise model and perfect secondary path. The equations for the mean and mean-square convergence behavior are derived. Extensive simulations of sinusoidal, band-limited white noise, and hybrid signals illustrate the accuracy of the analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反馈主动噪声控制FxLMS算法的随机分析
反馈主动噪声控制(ANC)系统在减少可预测噪声(如周期噪声、窄带噪声和彩色噪声)方面是有效的。目前关于反馈型ANC系统理论分析的研究还很少,而且仅限于正弦或高斯信号等理想化信号。本文提出了一种基于滤波-x最小均方(FxLMS)算法的反馈ANC系统的随机分析,该算法不依赖于特定的噪声模型和完善的二次路径。导出了均值收敛性和均方收敛性的方程。广泛的模拟正弦,带限白噪声,和混合信号说明了分析的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Blind Capon Beamformer Based on Independent Component Extraction: Single-Parameter Algorithm An Adaptive CFAR Target Detector Based on the Quadratic Sum of Sample Autocovariances HiFiMSFA: Robust and High-Fidelity Image Watermarking Using Attention Augmented Deep Network Iterative Closest Point via MultiKernel Correntropy for Point Cloud Fine Registration Diffusion Generalized Minimum Total Error Entropy Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1