Chengzhong Wang;Jianjun Gu;Dingding Yao;Junfeng Li;Yonghong Yan
{"title":"GALD-SE: Guided Anisotropic Lightweight Diffusion for Efficient Speech Enhancement","authors":"Chengzhong Wang;Jianjun Gu;Dingding Yao;Junfeng Li;Yonghong Yan","doi":"10.1109/LSP.2024.3522852","DOIUrl":null,"url":null,"abstract":"Speech enhancement is designed to enhance the intelligibility and quality of speech across diverse noise conditions. Recently, diffusion models have gained lots of attention in speech enhancement area, achieving competitive results. Current diffusion-based methods blur the distribution of the signal with isotropic Gaussian noise and recover clean speech distribution from the prior. However, these methods often suffer from a substantial computational burden. We argue that the computational inefficiency partially stems from the oversight that speech enhancement is not purely a generative task; it primarily involves noise reduction and completion of missing information, while the clean clues in the original mixture do not need to be regenerated. In this paper, we propose a method that introduces noise with anisotropic guidance during the diffusion process, allowing the neural network to preserve clean clues within noisy recordings. This approach substantially reduces computational complexity while exhibiting robustness against various forms of noise and speech distortion. Experiments demonstrate that the proposed method achieves state-of-the-art results with only approximately 4.5 million parameters, a number significantly lower than that required by other diffusion methods. This effectively narrows the model size disparity between diffusion-based and predictive speech enhancement approaches. Additionally, the proposed method performs well in very noisy scenarios, demonstrating its potential for applications in highly challenging environments.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"426-430"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10816305/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Speech enhancement is designed to enhance the intelligibility and quality of speech across diverse noise conditions. Recently, diffusion models have gained lots of attention in speech enhancement area, achieving competitive results. Current diffusion-based methods blur the distribution of the signal with isotropic Gaussian noise and recover clean speech distribution from the prior. However, these methods often suffer from a substantial computational burden. We argue that the computational inefficiency partially stems from the oversight that speech enhancement is not purely a generative task; it primarily involves noise reduction and completion of missing information, while the clean clues in the original mixture do not need to be regenerated. In this paper, we propose a method that introduces noise with anisotropic guidance during the diffusion process, allowing the neural network to preserve clean clues within noisy recordings. This approach substantially reduces computational complexity while exhibiting robustness against various forms of noise and speech distortion. Experiments demonstrate that the proposed method achieves state-of-the-art results with only approximately 4.5 million parameters, a number significantly lower than that required by other diffusion methods. This effectively narrows the model size disparity between diffusion-based and predictive speech enhancement approaches. Additionally, the proposed method performs well in very noisy scenarios, demonstrating its potential for applications in highly challenging environments.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.