{"title":"Size Effect on the Spherical Scratch Response in Single Crystalline Copper","authors":"Jinxuan Zhu, Tao He","doi":"10.1007/s11249-024-01954-1","DOIUrl":null,"url":null,"abstract":"<div><p>The characterization of wear response in crystalline materials poses some challenges due to the presence of the size effect at small scales. In this study, we systematically conducted spherical nano-scratch simulations on (101)-oriented copper, using the mechanism-based strain gradient crystal plasticity theory, to explore the indenter size effect in the scratch hardness. The developed nano-scratch models are validated experimentally by comparing scratch depths and topographies. By examining the results obtained from conventional crystal plasticity and mechanism-based strain gradient crystal plasticity simulations, an indenter size effect in scratch hardness was identified. Furthermore, the mechanism of the indenter size effect in scratch hardness was quantitatively analyzed, by discussing the proportion of geometrically necessary dislocation lengths in the cumulative increments of dislocations.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01954-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The characterization of wear response in crystalline materials poses some challenges due to the presence of the size effect at small scales. In this study, we systematically conducted spherical nano-scratch simulations on (101)-oriented copper, using the mechanism-based strain gradient crystal plasticity theory, to explore the indenter size effect in the scratch hardness. The developed nano-scratch models are validated experimentally by comparing scratch depths and topographies. By examining the results obtained from conventional crystal plasticity and mechanism-based strain gradient crystal plasticity simulations, an indenter size effect in scratch hardness was identified. Furthermore, the mechanism of the indenter size effect in scratch hardness was quantitatively analyzed, by discussing the proportion of geometrically necessary dislocation lengths in the cumulative increments of dislocations.
期刊介绍:
Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.