Myoglobin Expression by Tumor Cells and Its Role in Progression of Malignancy

G. B. Postnikova, E. A. Shekhovtsova
{"title":"Myoglobin Expression by Tumor Cells and Its Role in Progression of Malignancy","authors":"G. B. Postnikova,&nbsp;E. A. Shekhovtsova","doi":"10.1134/S1990747824700284","DOIUrl":null,"url":null,"abstract":"<p>The review considers the data available in the literature on myoglobin expression in various tumors and cell lines of non-muscle tumor cells and on the influence of hypoxia, reactive oxygen and nitrogen species, hormones, growth factors, gender, and age on this process. The effect of tumor myoglobin on cellular processes such as oxidative stress, inhibition of mitochondrial respiration by nitric oxide, and fatty acid metabolism is also analyzed, both during endogenous expression of small amounts (~1 μM) of myoglobin and overexpression of the protein (~150 μM) due to incorporation of the myoglobin gene into the tumor cell genome. It is concluded that hypoxia-induced intrinsic expression of low concentrations of myoglobin, due to its ability to utilize reactive oxygen and nitrogen species that can damage tumor cells, ensures their better survival by promoting tumor progression and metastasis. Accordingly, this expression of myoglobin is generally associated with a more aggressive tumor type, poor prognosis for the course and outcome of the disease, and may thus serve as a “marker” of an aggressive malignancy. In contrast, artificial overexpression of myoglobin can significantly inhibit tumor development and improve disease course by switching cancer cell metabolism from tumor-specific glycolysis to oxidative phosphorylation inherent in healthy tissue. Myoglobin overexpression may thus be an effective therapeutic tool in oncology.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"18 4","pages":"285 - 295"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747824700284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The review considers the data available in the literature on myoglobin expression in various tumors and cell lines of non-muscle tumor cells and on the influence of hypoxia, reactive oxygen and nitrogen species, hormones, growth factors, gender, and age on this process. The effect of tumor myoglobin on cellular processes such as oxidative stress, inhibition of mitochondrial respiration by nitric oxide, and fatty acid metabolism is also analyzed, both during endogenous expression of small amounts (~1 μM) of myoglobin and overexpression of the protein (~150 μM) due to incorporation of the myoglobin gene into the tumor cell genome. It is concluded that hypoxia-induced intrinsic expression of low concentrations of myoglobin, due to its ability to utilize reactive oxygen and nitrogen species that can damage tumor cells, ensures their better survival by promoting tumor progression and metastasis. Accordingly, this expression of myoglobin is generally associated with a more aggressive tumor type, poor prognosis for the course and outcome of the disease, and may thus serve as a “marker” of an aggressive malignancy. In contrast, artificial overexpression of myoglobin can significantly inhibit tumor development and improve disease course by switching cancer cell metabolism from tumor-specific glycolysis to oxidative phosphorylation inherent in healthy tissue. Myoglobin overexpression may thus be an effective therapeutic tool in oncology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
28
期刊介绍: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology   is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.
期刊最新文献
Approach for Analysis of Intracellular Markers in Phosphatidylserine-Positive Platelets Interaction of Albumin with Angiotensin-I-Converting Enzyme According to Molecular Modeling Data Cationic and Ionizable Amphiphiles Based on Dihexadecyl Ester of L-Glutamic Acid for Liposomal Transport of RNA Oxygenic Photosynthesis: Induction of Chlorophyll a Fluorescence and Regulation of Electron Transport in Thylakoid Membranes In Silico Comparison of Spontaneous and Evoked Activity of CA1 Pyramidal Cells and Dentate Gyrus Granule Cells of the Hippocampus at an Increased Extracellular Potassium Concentration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1