Semi-analytical solution of external water pressure of water rich tunnel considering waterproof and drainage system

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2025-01-04 DOI:10.1007/s10064-024-04045-6
Haobo Fan, Dongping Zhao, Zhengguo Zhu, Wei Hu, Yongquan Zhu, Xinqiang Gao
{"title":"Semi-analytical solution of external water pressure of water rich tunnel considering waterproof and drainage system","authors":"Haobo Fan,&nbsp;Dongping Zhao,&nbsp;Zhengguo Zhu,&nbsp;Wei Hu,&nbsp;Yongquan Zhu,&nbsp;Xinqiang Gao","doi":"10.1007/s10064-024-04045-6","DOIUrl":null,"url":null,"abstract":"<div><p>Water rich tunnels are often subject to lining seepage and water leakage. The water pressure behind lining is the main factor that causes the tunnel diseases. To calculate the water pressure of tunnel lining, axisymmetric analysis, mirror image method, and conformal transformation method are commonly used. However, axisymmetric analysis and mirror image method are only applicable to the tunnels in high water level. The conformal transformation method can be applied to both high and low water level tunnels, but cannot consider the effects of grouting rings and lining. This paper simplified the seepage of groundwater into a fan-shaped vertical shaft seepage problem, and derived the analytical formula of lining water pressure considering the shape of tunnel. A semi-analytical method of lining water pressure considering the influence of waterproof and drainage systems was proposed. The results show that the water pressure is related to the height of the initial water head, permeability coefficient of materials and geometric sizes of lining. According to the reduction degree of water pressure, it can be divided into three areas, namely, uniform reduction area of arch, discharge area of longitudinal drainage pipe and uniform reduction area of invert. With the increase of water head of the tunnel vault, the water pressure difference between vault and invert increases gradually, and the invert is easy to be damaged. The research results can provide guidance for the structural design and optimization of water rich tunnel.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04045-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Water rich tunnels are often subject to lining seepage and water leakage. The water pressure behind lining is the main factor that causes the tunnel diseases. To calculate the water pressure of tunnel lining, axisymmetric analysis, mirror image method, and conformal transformation method are commonly used. However, axisymmetric analysis and mirror image method are only applicable to the tunnels in high water level. The conformal transformation method can be applied to both high and low water level tunnels, but cannot consider the effects of grouting rings and lining. This paper simplified the seepage of groundwater into a fan-shaped vertical shaft seepage problem, and derived the analytical formula of lining water pressure considering the shape of tunnel. A semi-analytical method of lining water pressure considering the influence of waterproof and drainage systems was proposed. The results show that the water pressure is related to the height of the initial water head, permeability coefficient of materials and geometric sizes of lining. According to the reduction degree of water pressure, it can be divided into three areas, namely, uniform reduction area of arch, discharge area of longitudinal drainage pipe and uniform reduction area of invert. With the increase of water head of the tunnel vault, the water pressure difference between vault and invert increases gradually, and the invert is easy to be damaged. The research results can provide guidance for the structural design and optimization of water rich tunnel.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑防水排水系统的富水隧道外水压半解析解
富水隧道常发生衬砌渗水和漏水问题。衬砌后水压是引起隧道病害的主要因素。隧道衬砌水压计算常用轴对称分析、镜像法和保角变换法。然而,轴对称分析和镜像法仅适用于高水位隧道。保形变换法适用于高低水位隧道,但不能考虑注浆环和衬砌的影响。本文将地下水渗流问题简化为扇形立井渗流问题,推导出考虑隧道形状的衬砌水压解析公式。提出了一种考虑防水排水系统影响的衬砌水压半解析方法。结果表明:水压力与初始水头高度、材料渗透系数和衬砌几何尺寸有关;根据水压减小程度,可分为拱顶均匀减小区、纵向排水管排放区和仰拱均匀减小区三个区域。随着隧道拱顶水头的增大,拱顶与仰拱之间的水压差逐渐增大,仰拱容易损坏。研究结果可为富水隧道的结构设计与优化提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
Influence of topography on the fragmentation and mobility of landslides Experimental investigation of the mechanical behaviour of sand-rubber-gravel mixtures Study on macroscopic and microscopic damage and evolution of coal rock based on acoustic emission time-varying characteristics Failure mechanism and mechanical analysis in horizontal bedded surrounding rock with high in-situ stress An experimental study on the characterization and durability of two building low-porous trachyte and gabbro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1