Multiple testing for signal-agnostic searches for new physics with machine learning

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS The European Physical Journal C Pub Date : 2025-01-04 DOI:10.1140/epjc/s10052-024-13722-5
Gaia Grosso, Marco Letizia
{"title":"Multiple testing for signal-agnostic searches for new physics with machine learning","authors":"Gaia Grosso,&nbsp;Marco Letizia","doi":"10.1140/epjc/s10052-024-13722-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we address the question of how to enhance signal-agnostic searches by leveraging multiple testing strategies. Specifically, we consider hypothesis tests relying on machine learning, where model selection can introduce a bias towards specific families of new physics signals. Focusing on the New Physics Learning Machine, a methodology to perform a signal-agnostic likelihood-ratio test, we explore a number of approaches to multiple testing, such as combining <i>p</i>-values and aggregating test statistics. Our findings show that it is beneficial to combine different tests, characterised by distinct choices of hyperparameters, and that performances comparable to the best available test are generally achieved, while also providing a more uniform response to various types of anomalies. This study proposes a methodology that is valid beyond machine learning approaches and could in principle be applied to a larger class model-agnostic analyses based on hypothesis testing.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13722-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13722-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we address the question of how to enhance signal-agnostic searches by leveraging multiple testing strategies. Specifically, we consider hypothesis tests relying on machine learning, where model selection can introduce a bias towards specific families of new physics signals. Focusing on the New Physics Learning Machine, a methodology to perform a signal-agnostic likelihood-ratio test, we explore a number of approaches to multiple testing, such as combining p-values and aggregating test statistics. Our findings show that it is beneficial to combine different tests, characterised by distinct choices of hyperparameters, and that performances comparable to the best available test are generally achieved, while also providing a more uniform response to various types of anomalies. This study proposes a methodology that is valid beyond machine learning approaches and could in principle be applied to a larger class model-agnostic analyses based on hypothesis testing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用机器学习对新物理进行信号不可知搜索的多重测试
在这项工作中,我们解决了如何通过利用多种测试策略来增强信号不可知搜索的问题。具体来说,我们考虑依赖于机器学习的假设检验,其中模型选择可能会引入对特定新物理信号家族的偏见。以新物理学习机(New Physics Learning Machine,一种执行信号不确定似然比检验的方法)为重点,我们探索了多种多重检验方法,如组合p值和聚合检验统计量。我们的研究结果表明,结合不同的测试是有益的,以不同的超参数选择为特征,并且通常可以实现与最佳可用测试相当的性能,同时还可以对各种类型的异常提供更统一的响应。本研究提出了一种超越机器学习方法的有效方法,原则上可以应用于基于假设检验的更大类别的模型不可知分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
期刊最新文献
New physics in spin entanglement The impact of compact object deformation on thin accretion disk properties Further study of \(c\bar{c}c\bar{c}\) system within a chiral quark model Finding excesses in model parameter space Charged spherically symmetric and slowly rotating charged black hole solutions in bumblebee gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1