{"title":"Preparation and characterization of polystyrene-based plastic scintillators as a self-vetoing structural material","authors":"Yu-Lu Yan, Yu Liu, Chang-Hao Fang, Jing-Jun Zhu, Shin-Ted Lin, Shu-Kui Liu, Chang-Jian Tang, Chun-Ling Wang, Hao-Yang Xing","doi":"10.1007/s10965-024-04206-x","DOIUrl":null,"url":null,"abstract":"<div><p>The liquid argon (LAr) detector has garnered significant interest in recent experiments focusing on dark matter and neutrinoless double-beta decay searches. However, the wavelength shifting and light collection present persistent technical challenges for the liquid argon (LAr) detector. In this work, a novel plastic scintillator material was developed and optimized to enhance the light collection efficiency of LAr detectors. The plastic scintillator was prepared via thermal polymerization, utilizing styrene as the matrix doped with TPB (1,1,4,4-tetraphenyl-1,3-butadiene). A mass fraction of 1% of TPB-PS has been identified as the optimal concentration, emitting the strongest blue fluorescence with a quantum yield of 99.89%. The fluorescence emission spectrum of the new material peaks at 440 nm, which aligns with the best quantum efficiency of conventional photoelectron converter devices. The light yield of the 1% TPB-PS is 73.98% relative to the value of the standard sample EJ-200. Its decay time is 2.75 ns approximately. Mechanical tests present the developed TPB-PS material can be used as an active structure material for LAr detectors in next-generation experiments. Furthermore, the TPB-PS material can be prepared into wavelength-shifting (WLS) optical fiber, which can be coupled with silicon photomultipliers (SiPMs) to enhance the light collection efficiency of LAr detectors, improving background rejection and energy resolution.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04206-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The liquid argon (LAr) detector has garnered significant interest in recent experiments focusing on dark matter and neutrinoless double-beta decay searches. However, the wavelength shifting and light collection present persistent technical challenges for the liquid argon (LAr) detector. In this work, a novel plastic scintillator material was developed and optimized to enhance the light collection efficiency of LAr detectors. The plastic scintillator was prepared via thermal polymerization, utilizing styrene as the matrix doped with TPB (1,1,4,4-tetraphenyl-1,3-butadiene). A mass fraction of 1% of TPB-PS has been identified as the optimal concentration, emitting the strongest blue fluorescence with a quantum yield of 99.89%. The fluorescence emission spectrum of the new material peaks at 440 nm, which aligns with the best quantum efficiency of conventional photoelectron converter devices. The light yield of the 1% TPB-PS is 73.98% relative to the value of the standard sample EJ-200. Its decay time is 2.75 ns approximately. Mechanical tests present the developed TPB-PS material can be used as an active structure material for LAr detectors in next-generation experiments. Furthermore, the TPB-PS material can be prepared into wavelength-shifting (WLS) optical fiber, which can be coupled with silicon photomultipliers (SiPMs) to enhance the light collection efficiency of LAr detectors, improving background rejection and energy resolution.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.