{"title":"Recent progress on photoactive nonprecious transition-metal complexes","authors":"Zhong-Liang Gong, Hong-Jie Zhang, Yan Cheng, Jianxun Liu, Yuhan Ai, Yaqin Li, Zhihui Feng, Qiong Zhang, Shaolong Gong, Yong Chen, Chang-Jiang Yao, Yuan-Yuan Zhu, Liang-Jin Xu, Yu-Wu Zhong","doi":"10.1007/s11426-024-2345-0","DOIUrl":null,"url":null,"abstract":"<div><p>Photoactive complexes of nonprecious transition metals, mainly including those in the first-row and partially the second-row of the Periodic table of elements, have received increasing attention in view of their low cost and long-term sustainability. They are recognized as promising alternatives to noble transition metal complex congeners that have been extensively studied in optoelectronic devices, artificial photosynthesis, photocatalysis, biodiagnostics, and therapeutics, etc. This review is devoted to a comprehensive summary on the classical and recent advances on photoactive nonprecious transition metal complexes, including photoactive Zr, V, Cr, Mo, and W complexes, Mn complexes and hybrids, Fe, Co, Ni, and Cu complexes, and Zn and Cd complexes and hybrids. A particular focus is given on the molecular design, modulation of photophysical and photochemical properties, and applications of the representative and lately-developed nonprecious metal complexes. In addition, a perspective on the future development in this field is provided at the end of this review.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"68 1","pages":"46 - 95"},"PeriodicalIF":10.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2345-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoactive complexes of nonprecious transition metals, mainly including those in the first-row and partially the second-row of the Periodic table of elements, have received increasing attention in view of their low cost and long-term sustainability. They are recognized as promising alternatives to noble transition metal complex congeners that have been extensively studied in optoelectronic devices, artificial photosynthesis, photocatalysis, biodiagnostics, and therapeutics, etc. This review is devoted to a comprehensive summary on the classical and recent advances on photoactive nonprecious transition metal complexes, including photoactive Zr, V, Cr, Mo, and W complexes, Mn complexes and hybrids, Fe, Co, Ni, and Cu complexes, and Zn and Cd complexes and hybrids. A particular focus is given on the molecular design, modulation of photophysical and photochemical properties, and applications of the representative and lately-developed nonprecious metal complexes. In addition, a perspective on the future development in this field is provided at the end of this review.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.