Complement inhibition targets a rich-club within the neuroinflammatory network after stroke to improve radiographic and functional outcomes.

IF 9.3 1区 医学 Q1 IMMUNOLOGY Journal of Neuroinflammation Pub Date : 2025-01-04 DOI:10.1186/s12974-024-03316-z
Youssef M Zohdy, Tomas Garzon-Muvdi, Jonathan A Grossberg, Daniel L Barrow, Brian M Howard, Gustavo Pradilla, Firas H Kobeissy, Stephen Tomlinson, Ali M Alawieh
{"title":"Complement inhibition targets a rich-club within the neuroinflammatory network after stroke to improve radiographic and functional outcomes.","authors":"Youssef M Zohdy, Tomas Garzon-Muvdi, Jonathan A Grossberg, Daniel L Barrow, Brian M Howard, Gustavo Pradilla, Firas H Kobeissy, Stephen Tomlinson, Ali M Alawieh","doi":"10.1186/s12974-024-03316-z","DOIUrl":null,"url":null,"abstract":"<p><p>Following recent advances in post-thrombectomy stroke care, the role of neuroinflammation and neuroprotective strategies in mitigating secondary injury has gained prominence. Yet, while neuroprotection and anti-inflammatory agents have re-emerged in clinical trials, their success has been limited. The neuroinflammatory response in cerebral ischemia is robust and multifactorial, complicating therapeutic approaches targeting single pathways. In this study, we aimed to characterize early inflammatory gene dysregulation following ischemic stroke using translational in-silico and in-vivo approaches. Using an in vivo ischemic stroke model, transcriptomic analysis revealed significant dysregulation of inflammatory genes. Graph theory analysis then showed a rich-club organization among stroke-related genes, with highly connected core nodes. The expression levels of the core genes identified within this network significantly explained radiological outcomes, including T2-signal hyperintensity (R<sup>2</sup> = 0.57, P < 0.001), mean diffusivity (R<sup>2</sup> = 0.52, P < 0.001), and mean kurtosis (R<sup>2</sup> = 0.65, P < 0.001), correlating more strongly than non-core genes. Similar findings were observed with functional and cognitive outcomes, showing R<sup>2</sup> values of 0.58, 0.7, 0.54, and 0.7 for neurological severity scores, corner tasks, passive avoidance, and novel object recognition tasks, respectively (P < 0.001). Using in-silico analysis, we identified a set of upstream regulators directly interacting with core network nodes, leading to simulations that highlighted C3-targeted therapy as a potential treatment. This hypothesis was then confirmed in vivo using a targeted C3 inhibitor (CR2-fH), which reversed gene dysregulation in the neuroinflammatory network and improved radiological and functional outcomes. Our findings underscore the significance of neuroinflammation in stroke pathology, supporting network-based therapeutic targeting and demonstrating the benefits of targeted complement inhibition in enhancing outcomes through modulation of the neuroinflammatory network core. This study's approach, combining graph theory analysis along with in-silico modeling, offers a promising translational pipeline applicable to stroke and other complex diseases.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"1"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699776/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03316-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Following recent advances in post-thrombectomy stroke care, the role of neuroinflammation and neuroprotective strategies in mitigating secondary injury has gained prominence. Yet, while neuroprotection and anti-inflammatory agents have re-emerged in clinical trials, their success has been limited. The neuroinflammatory response in cerebral ischemia is robust and multifactorial, complicating therapeutic approaches targeting single pathways. In this study, we aimed to characterize early inflammatory gene dysregulation following ischemic stroke using translational in-silico and in-vivo approaches. Using an in vivo ischemic stroke model, transcriptomic analysis revealed significant dysregulation of inflammatory genes. Graph theory analysis then showed a rich-club organization among stroke-related genes, with highly connected core nodes. The expression levels of the core genes identified within this network significantly explained radiological outcomes, including T2-signal hyperintensity (R2 = 0.57, P < 0.001), mean diffusivity (R2 = 0.52, P < 0.001), and mean kurtosis (R2 = 0.65, P < 0.001), correlating more strongly than non-core genes. Similar findings were observed with functional and cognitive outcomes, showing R2 values of 0.58, 0.7, 0.54, and 0.7 for neurological severity scores, corner tasks, passive avoidance, and novel object recognition tasks, respectively (P < 0.001). Using in-silico analysis, we identified a set of upstream regulators directly interacting with core network nodes, leading to simulations that highlighted C3-targeted therapy as a potential treatment. This hypothesis was then confirmed in vivo using a targeted C3 inhibitor (CR2-fH), which reversed gene dysregulation in the neuroinflammatory network and improved radiological and functional outcomes. Our findings underscore the significance of neuroinflammation in stroke pathology, supporting network-based therapeutic targeting and demonstrating the benefits of targeted complement inhibition in enhancing outcomes through modulation of the neuroinflammatory network core. This study's approach, combining graph theory analysis along with in-silico modeling, offers a promising translational pipeline applicable to stroke and other complex diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
补体抑制针对中风后神经炎症网络中的富俱乐部,以改善影像学和功能预后。
随着血栓切除术后卒中护理的最新进展,神经炎症和神经保护策略在减轻继发性损伤中的作用已得到重视。然而,尽管神经保护和抗炎药物重新出现在临床试验中,但它们的成功仍然有限。脑缺血的神经炎症反应是强大的,多因素的,复杂的治疗方法针对单一途径。在这项研究中,我们旨在通过计算机翻译和体内方法表征缺血性中风后的早期炎症基因失调。利用体内缺血性脑卒中模型,转录组学分析揭示了炎症基因的显著失调。图论分析显示,中风相关基因之间存在一个富俱乐部组织,具有高度连接的核心节点。在该网络中鉴定的核心基因的表达水平显著解释了放射学结果,包括t2信号高强度(R2 = 0.57, P 2 = 0.52, P 2 = 0.65, P 2值分别为0.58,0.7,0.54和0.7),用于神经严重程度评分,角落任务,被动回避和新目标识别任务
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
期刊最新文献
IDO1 modulates pain sensitivity and comorbid anxiety in chronic migraine through microglial activation and synaptic pruning. Human breast milk-derived exosomes attenuate lipopolysaccharide-induced activation in microglia. Innate immune sensors and regulators at the blood brain barrier: focus on toll-like receptors and inflammasomes as mediators of neuro-immune crosstalk and inflammation. The interaction between central and peripheral immune systems in methamphetamine use disorder: current status and future directions. α-Synuclein orchestrates Th17 responses as antigen and adjuvant in Parkinson's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1