Role of miR-125b-5p in modulating placental SIRT7 expression and its implications for lipid metabolism in gestational diabetes.

IF 2.9 3区 医学 Q3 IMMUNOLOGY Journal of Reproductive Immunology Pub Date : 2024-12-25 DOI:10.1016/j.jri.2024.104422
K L Milan, M Anuradha, Kunka Mohanram Ramkumar
{"title":"Role of miR-125b-5p in modulating placental SIRT7 expression and its implications for lipid metabolism in gestational diabetes.","authors":"K L Milan, M Anuradha, Kunka Mohanram Ramkumar","doi":"10.1016/j.jri.2024.104422","DOIUrl":null,"url":null,"abstract":"<p><p>Gestational diabetes is marked impaired glucose tolerance, poses various adverse outcomes including increased BMI and obesity. These outcomes results from excess lipid accumulation which is marked by elevated triglycerides. In GDM, placenta exhibits altered lipid metabolism, including reduced fatty acid oxidation and increased triglyceride accumulation. These elevated triglycerides can also contribute to oxidative stress in GDM. SIRT7 plays an important role in regulating lipid metabolism and triglycerides levels. This study aimed to investigate the potential of miRNA to regulate the placental SIRT7 in GDM. PCR analysis reveals that SIRT7 expression along with oxidative stress markers elevated in GDM placenta. These elevated SIRT7 levels were positively correlated with BMI and triglycerides levels in GDM subjects. miR-125b-5p was identified to regulate SIRT7 mRNA using in-silico approaches. Expression levels of miR-125b-5p were found to be downregulated in GDM placenta and found to be negatively correlated with SIRT7 mRNA expression. To confirm the hypothesis BeWo cells were transfected with anti-miR-125b and miR-125b-mimic. Anti-miR overexpressed the SIRT7 expression where mimic dysregulated it. Additionally, overexpressing miR-125b-5p controlled the elevated SIRT7 caused by the exposure of high glucose in BeWo cells. Collectively this study indicated that miR-125b-5p may regulate lipid metabolism via SIRT7 contributing to GDM. These findings highlights the warrant of further research to develop the therapeutic approaches that target miR-125b-5p to reduce lipid accumulation and obesity in GDM.</p>","PeriodicalId":16963,"journal":{"name":"Journal of Reproductive Immunology","volume":"167 ","pages":"104422"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reproductive Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jri.2024.104422","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gestational diabetes is marked impaired glucose tolerance, poses various adverse outcomes including increased BMI and obesity. These outcomes results from excess lipid accumulation which is marked by elevated triglycerides. In GDM, placenta exhibits altered lipid metabolism, including reduced fatty acid oxidation and increased triglyceride accumulation. These elevated triglycerides can also contribute to oxidative stress in GDM. SIRT7 plays an important role in regulating lipid metabolism and triglycerides levels. This study aimed to investigate the potential of miRNA to regulate the placental SIRT7 in GDM. PCR analysis reveals that SIRT7 expression along with oxidative stress markers elevated in GDM placenta. These elevated SIRT7 levels were positively correlated with BMI and triglycerides levels in GDM subjects. miR-125b-5p was identified to regulate SIRT7 mRNA using in-silico approaches. Expression levels of miR-125b-5p were found to be downregulated in GDM placenta and found to be negatively correlated with SIRT7 mRNA expression. To confirm the hypothesis BeWo cells were transfected with anti-miR-125b and miR-125b-mimic. Anti-miR overexpressed the SIRT7 expression where mimic dysregulated it. Additionally, overexpressing miR-125b-5p controlled the elevated SIRT7 caused by the exposure of high glucose in BeWo cells. Collectively this study indicated that miR-125b-5p may regulate lipid metabolism via SIRT7 contributing to GDM. These findings highlights the warrant of further research to develop the therapeutic approaches that target miR-125b-5p to reduce lipid accumulation and obesity in GDM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
5.90%
发文量
162
审稿时长
10.6 weeks
期刊介绍: Affiliated with the European Society of Reproductive Immunology and with the International Society for Immunology of Reproduction The aim of the Journal of Reproductive Immunology is to provide the critical forum for the dissemination of results from high quality research in all aspects of experimental, animal and clinical reproductive immunobiology. This encompasses normal and pathological processes of: * Male and Female Reproductive Tracts * Gametogenesis and Embryogenesis * Implantation and Placental Development * Gestation and Parturition * Mammary Gland and Lactation.
期刊最新文献
Role of miR-125b-5p in modulating placental SIRT7 expression and its implications for lipid metabolism in gestational diabetes. The relation of anti-phosphatidylserine/prothrombin antibodies and premature rupture of membranes: A retrospective cohort study. Immunohistochemical examination of PNAd, α4β1 integrin and MUC-2 expressions in the secretary phase endometrium of women diagnosed with recurrent implantation failure. LncRNA-THBS4 affects granulosa cell proliferation and apoptosis in diminished ovarian reserve by regulating PI3K/AKT/mTOR signaling pathway. The role of reproductive tract microbiota in gynecological health and diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1