Cardiorespiratory dynamics in the brain: Review on the significance of cardiovascular and respiratory correlates in functional MRI signal.

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2025-02-01 Epub Date: 2025-01-01 DOI:10.1016/j.neuroimage.2024.121000
Mahathi Kandimalla, Seokbeen Lim, Jay Thakkar, Sannidhi Dewan, Daehun Kang, Myung-Ho In, Hang Joon Jo, Dong Pyo Jang, Zuzana Nedelska, Maria I Lapid, Yunhong Shu, Cheon-Pyung, Petrice M Cogswell, Val J Lowe, Jeyeon Lee, Hoon-Ki Min
{"title":"Cardiorespiratory dynamics in the brain: Review on the significance of cardiovascular and respiratory correlates in functional MRI signal.","authors":"Mahathi Kandimalla, Seokbeen Lim, Jay Thakkar, Sannidhi Dewan, Daehun Kang, Myung-Ho In, Hang Joon Jo, Dong Pyo Jang, Zuzana Nedelska, Maria I Lapid, Yunhong Shu, Cheon-Pyung, Petrice M Cogswell, Val J Lowe, Jeyeon Lee, Hoon-Ki Min","doi":"10.1016/j.neuroimage.2024.121000","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiorespiratory signals have long been treated as \"noise\" in functional magnetic resonance imaging (fMRI) research, with the goal of minimizing their impact to isolate neural activity. However, there is a growing recognition that these signals, once seen as confounding variables, provide valuable insights into brain function and overall health. This shift reflects the dynamic interaction between the cardiovascular, respiratory, and neural systems, which together support brain activity. In this review, we explore the role of cardiorespiratory dynamics-such as heart rate variability (HRV), respiratory sinus arrhythmia (RSA), and changes in blood flow, oxygenation, and carbon dioxide levels-embedded within fMRI signals. These physiological signals reflect critical aspects of neurovascular coupling and are influenced by factors such as physiological stress, breathing patterns, and age-related changes. We also discuss the complexities of distinguishing these signals from neuronal activity in fMRI data, given their significant contribution to signal variability and interactions with cerebrospinal fluid (CSF). Recognizing the influence of these cardiorespiratory dynamics is crucial for improving the interpretation of fMRI data, shedding light on heart-brain and respiratory-brain connections, and enhancing our understanding of circulation, oxygen delivery, and waste elimination within the brain.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"121000"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2024.121000","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiorespiratory signals have long been treated as "noise" in functional magnetic resonance imaging (fMRI) research, with the goal of minimizing their impact to isolate neural activity. However, there is a growing recognition that these signals, once seen as confounding variables, provide valuable insights into brain function and overall health. This shift reflects the dynamic interaction between the cardiovascular, respiratory, and neural systems, which together support brain activity. In this review, we explore the role of cardiorespiratory dynamics-such as heart rate variability (HRV), respiratory sinus arrhythmia (RSA), and changes in blood flow, oxygenation, and carbon dioxide levels-embedded within fMRI signals. These physiological signals reflect critical aspects of neurovascular coupling and are influenced by factors such as physiological stress, breathing patterns, and age-related changes. We also discuss the complexities of distinguishing these signals from neuronal activity in fMRI data, given their significant contribution to signal variability and interactions with cerebrospinal fluid (CSF). Recognizing the influence of these cardiorespiratory dynamics is crucial for improving the interpretation of fMRI data, shedding light on heart-brain and respiratory-brain connections, and enhancing our understanding of circulation, oxygen delivery, and waste elimination within the brain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑内心肺动力学:功能MRI信号中心血管和呼吸相关因素的意义综述。
在功能磁共振成像(fMRI)研究中,心肺信号一直被视为“噪声”,目的是尽量减少它们对分离神经活动的影响。然而,越来越多的人认识到,这些曾经被视为混杂变量的信号,为大脑功能和整体健康提供了有价值的见解。这种转变反映了心血管系统、呼吸系统和神经系统之间的动态相互作用,它们共同支持大脑活动。在这篇综述中,我们探讨了心肺动力学的作用,如心率变异性(HRV)、呼吸性窦性心律失常(RSA)、血流、氧合和二氧化碳水平的变化,这些都嵌入在功能磁共振成像信号中。这些生理信号反映了神经血管耦合的关键方面,并受到生理应激、呼吸模式和年龄相关变化等因素的影响。我们还讨论了在fMRI数据中从神经元活动中区分这些信号的复杂性,因为它们对信号变异性和与脑脊液(CSF)的相互作用有重要贡献。认识到这些心肺动力学的影响对于改善功能磁共振成像数据的解释,阐明心脑和呼吸脑的联系,增强我们对大脑循环、氧气输送和废物消除的理解至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Task-specific temporal prediction mechanisms revealed by motor and electroencephalographic indicators. A novel way to use cross-validation to measure connectivity by machine learning allows epilepsy surgery outcome prediction. Cardiorespiratory dynamics in the brain: Review on the significance of cardiovascular and respiratory correlates in functional MRI signal. Fast EEG/MEG BEM-based forward problem solution for high-resolution head models. Local structural-functional coupling with counterfactual explanations for epilepsy prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1