Effects of intra-tumoral cellular heterogeneity of oxygen partial pressure on biological effectiveness of hydrogen-, helium-, carbon-, oxygen-, and neon-ion beams.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2025-01-16 DOI:10.1088/1361-6560/ada5a5
Taku Inaniwa, Takamitsu Masuda, Nobuyuki Kanematsu
{"title":"Effects of intra-tumoral cellular heterogeneity of oxygen partial pressure on biological effectiveness of hydrogen-, helium-, carbon-, oxygen-, and neon-ion beams.","authors":"Taku Inaniwa, Takamitsu Masuda, Nobuyuki Kanematsu","doi":"10.1088/1361-6560/ada5a5","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressurepat the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellularpheterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.<i>Approach.</i>The intra-tumoral cellularpdistributions were simulated with a numerical tumor model for average oxygen pressuresp¯tranging from 2.5 to 15 mmHg. The relative biological effectiveness (RBE)-weighted dose distributions of 3-15 Gy prescribed doses were planned for a cuboid target with the five ion species for constantp¯tvalues. Radiosensitivities of human salivary gland tumor (HSG) and Chinese hamster ovary (CHO) cells were investigated. The planned dose distributions were then recalculated by taking thepheterogeneity into account.<i>Main results.</i>Asp¯tdecreased and prescribed dose increased, the biological effectiveness of the ion beams decreased due to thepheterogeneity. The reduction in biological effectiveness was pronounced for lighter H- and He-ion beams compared to heavier C-, O-, and Ne-ion beams. The RBE-weighted dose in the target for HSG (CHO) cells decreased by 41.2% (44.3%) for the H-ion beam, while it decreased by 16.7% (14.7%) for the Ne-ion beam at a prescribed dose of 15 Gy under ap¯tof 2.5 mmHg.<i>Significance.</i>The intra-tumoral cellularpheterogeneity causes a significant reduction in biological effectiveness of ion beams. These effects should be considered in estimation of therapeutic outcomes.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ada5a5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressurepat the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellularpheterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.Approach.The intra-tumoral cellularpdistributions were simulated with a numerical tumor model for average oxygen pressuresp¯tranging from 2.5 to 15 mmHg. The relative biological effectiveness (RBE)-weighted dose distributions of 3-15 Gy prescribed doses were planned for a cuboid target with the five ion species for constantp¯tvalues. Radiosensitivities of human salivary gland tumor (HSG) and Chinese hamster ovary (CHO) cells were investigated. The planned dose distributions were then recalculated by taking thepheterogeneity into account.Main results.Asp¯tdecreased and prescribed dose increased, the biological effectiveness of the ion beams decreased due to thepheterogeneity. The reduction in biological effectiveness was pronounced for lighter H- and He-ion beams compared to heavier C-, O-, and Ne-ion beams. The RBE-weighted dose in the target for HSG (CHO) cells decreased by 41.2% (44.3%) for the H-ion beam, while it decreased by 16.7% (14.7%) for the Ne-ion beam at a prescribed dose of 15 Gy under ap¯tof 2.5 mmHg.Significance.The intra-tumoral cellularpheterogeneity causes a significant reduction in biological effectiveness of ion beams. These effects should be considered in estimation of therapeutic outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肿瘤细胞内氧分压不均一性对氢、氦、碳、氧和氖离子束生物效应的影响。
目的:肿瘤微环境以血管组织不均匀为特征,导致肿瘤内细胞水平的氧分压不均匀,这是目前成像技术无法测量的。肿瘤内细胞的异质性可能导致放射治疗效果的降低。本研究的目的是探讨H-、He-、C-、O-和ne -离子束在不同氧合水平、规定剂量水平和细胞类型下对生物有效性的异质性影响。 ;在平均氧压2.5 ~ 15mmhg范围内,用数值肿瘤模型模拟肿瘤内细胞分布。以5种离子为定值,计划了3-15 Gy处方剂量的相对生物有效性(RBE)加权剂量分布。研究了人唾液腺肿瘤(HSG)和中国仓鼠卵巢(CHO)细胞的放射敏感性。然后通过考虑异质性重新计算计划剂量分布。& # xD;主要结果。随着剂量的减小和规定剂量的增加,离子束的生物有效性由于不均匀性而降低。与较重的C、O和ne离子束相比,较轻的H和he离子束的生物有效性明显降低。在2.5 mmHg下,在规定剂量为15 Gy的氖离子束下,靶细胞的rbe加权剂量降低了16.7% (14.7%),h离子束使HSG (CHO)细胞的rbe加权剂量降低了41.2%(44.3%)。肿瘤内细胞的异质性导致离子束的生物有效性显著降低。在评估治疗结果时应考虑这些影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Initial results of the Hyperion IIDPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. A multiplexing method based on multidimensional readout method. Diffusion transformer model with compact prior for low-dose PET reconstruction. A dual-domain network with division residual connection and feature fusion for CBCT scatter correction. A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1