Progress on One-dimensional Vanadium Pentoxide-based Nanomaterials for Advanced Energy Storage ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel), China.

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Recent Patents on Nanotechnology Pub Date : 2025-01-01 DOI:10.2174/0118722105349485241028104311
Wei Ni
{"title":"Progress on One-dimensional Vanadium Pentoxide-based Nanomaterials for Advanced Energy Storage ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel), China.","authors":"Wei Ni","doi":"10.2174/0118722105349485241028104311","DOIUrl":null,"url":null,"abstract":"<p><p>One-dimensional (1D) vanadium-based nanostructures have advantageous properties and are showing emerging critical applications in the fields of catalysis, smart devices, and electrochemical energy storage. We herein timely gave an overview of the 1D vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>)-based nanomaterials for these promising applications, especially regarding the merits of different synthetic methods, structures and properties combined with recent research frontiers in advanced energy storage, including batteries, supercapacitors and like. The high capacity, high rate and flexibility of 1D V<sub>2</sub>O<sub>5</sub>-based nanomaterials endow them with great potential in high-energy-density, high-power energy devices and specific/harsh environments. Finally, the directions and suggestions are provided for further development of this emerging and promising field.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0118722105349485241028104311","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

One-dimensional (1D) vanadium-based nanostructures have advantageous properties and are showing emerging critical applications in the fields of catalysis, smart devices, and electrochemical energy storage. We herein timely gave an overview of the 1D vanadium pentoxide (V2O5)-based nanomaterials for these promising applications, especially regarding the merits of different synthetic methods, structures and properties combined with recent research frontiers in advanced energy storage, including batteries, supercapacitors and like. The high capacity, high rate and flexibility of 1D V2O5-based nanomaterials endow them with great potential in high-energy-density, high-power energy devices and specific/harsh environments. Finally, the directions and suggestions are provided for further development of this emerging and promising field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进储能用一维五氧化二钒纳米材料研究进展
一维(1D)钒基纳米结构具有优越的性能,在催化、智能器件和电化学储能等领域显示出新兴的关键应用。本文对一维五氧化钒(V2O5)基纳米材料的应用前景进行了综述,并结合电池、超级电容器等先进储能领域的最新研究前沿,介绍了其不同的合成方法、结构和性能的优点。一维v2o5基纳米材料的高容量、高速率和柔韧性使其在高能量密度、大功率能量器件和特定/恶劣环境中具有巨大的潜力。最后,对这一新兴领域的进一步发展提出了方向和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Recent Patents on Nanotechnology
Recent Patents on Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
4.70
自引率
10.00%
发文量
50
审稿时长
3 months
期刊介绍: Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.
期刊最新文献
Fabrication with Characterization of Single-Walled Carbon Nanotube Thin Film Transistor (CNT-TFT) by Spin Coating Method for Flat Panel Display. Development of Stabilized and Aqueous Dissolvable Nanosuspension Encompassing BCS Class IV Drug via Optimization of Process and Formulation Variables. Research on Controllable Synthesis and Growth Mechanism of Sodium Vanadium Fluorophosphate Nanosheets. Progress on One-dimensional Vanadium Pentoxide-based Nanomaterials for Advanced Energy Storage ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel), China. Design Optimization and Evaluation of Patented Fast-Dissolving Oral Thin Film of Ambrisentan for the Treatment of Hypertension.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1