Tramadol-related fatalities: Metabolic ratios & SNPs/INDELs belonging to UGT1A8, UGT2B7, ABCC2, and SLC22A1.

Sanaa M Aly, Naoual Sabaouni, Benjamin Hennart, Jean-Michel Gaulier, Delphine Allorge
{"title":"Tramadol-related fatalities: Metabolic ratios & SNPs/INDELs belonging to UGT1A8, UGT2B7, ABCC2, and SLC22A1.","authors":"Sanaa M Aly, Naoual Sabaouni, Benjamin Hennart, Jean-Michel Gaulier, Delphine Allorge","doi":"10.1016/j.fsigen.2024.103218","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic polymorphism can cause variation in tramadol (TR) pharmacokinetic characteristics and the expected clinical response. In forensic toxicology, the data about parent and metabolite concentrations (MRs; metabolic ratios) could facilitate to determine the cause of death and to assess time between drug intake and death. In this study, the aim was to investigate if UGT1A8, UGT2B7, ABCC2, and SLC22A1 genotyping can facilitate interpretation by investigating the frequency of UGT1A8, UGT2B7, ABCC2, and SLC22A1 genotypes in forensic autopsy cases positive for TR and to assess whether there is a correlation between these genetic variants and MRs. Cases positive for TR (n = 48) were genotyped by HaloPlex Target Enrichment system for UGT1A8, UGT2B7, ABCC2, and SLC22A1 sequencing, in order to identify single nucleotide polymorphisms (SNPs) and/or insertion deletion (INDELs). In addition to, the concentrations of TR and its metabolites (M1 & M2) were determined by LC-MS/MS. Cases were categorized by cause of death. The investigated SNPs/INDELs were not overrepresented in any group. We found significant correlations between several loci (12 out of 73) in UGT1A8, ABCC2, and SLC22A1 genes and MRs (M2/M1, TR/M2, and TR/M1) in post-mortem TR cases. These results indicate these polymorphisms in the 4 investigated genes might influence TR pharmacokinetics leading to an unsatisfactory therapeutic effect or increasing the risk of toxicity. However, these findings should be supported in future studies with larger groups of cases.</p>","PeriodicalId":94012,"journal":{"name":"Forensic science international. Genetics","volume":"76 ","pages":"103218"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic science international. Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.fsigen.2024.103218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic polymorphism can cause variation in tramadol (TR) pharmacokinetic characteristics and the expected clinical response. In forensic toxicology, the data about parent and metabolite concentrations (MRs; metabolic ratios) could facilitate to determine the cause of death and to assess time between drug intake and death. In this study, the aim was to investigate if UGT1A8, UGT2B7, ABCC2, and SLC22A1 genotyping can facilitate interpretation by investigating the frequency of UGT1A8, UGT2B7, ABCC2, and SLC22A1 genotypes in forensic autopsy cases positive for TR and to assess whether there is a correlation between these genetic variants and MRs. Cases positive for TR (n = 48) were genotyped by HaloPlex Target Enrichment system for UGT1A8, UGT2B7, ABCC2, and SLC22A1 sequencing, in order to identify single nucleotide polymorphisms (SNPs) and/or insertion deletion (INDELs). In addition to, the concentrations of TR and its metabolites (M1 & M2) were determined by LC-MS/MS. Cases were categorized by cause of death. The investigated SNPs/INDELs were not overrepresented in any group. We found significant correlations between several loci (12 out of 73) in UGT1A8, ABCC2, and SLC22A1 genes and MRs (M2/M1, TR/M2, and TR/M1) in post-mortem TR cases. These results indicate these polymorphisms in the 4 investigated genes might influence TR pharmacokinetics leading to an unsatisfactory therapeutic effect or increasing the risk of toxicity. However, these findings should be supported in future studies with larger groups of cases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
曲马多相关死亡:UGT1A8、UGT2B7、ABCC2和SLC22A1的代谢比率和snp / indel。
遗传多态性可引起曲马多(TR)药代动力学特征和预期临床反应的变化。在法医毒理学中,母体和代谢物浓度(MRs;代谢比率)有助于确定死亡原因和评估药物摄入与死亡之间的时间。本研究旨在通过调查法医尸检TR阳性病例中UGT1A8、UGT2B7、ABCC2和SLC22A1基因型的频率,探讨UGT1A8、UGT2B7、ABCC2和SLC22A1基因型是否有助于解释,并评估这些基因变异与mr .之间是否存在相关性。对TR阳性病例(n = 48)采用HaloPlex靶富集系统对UGT1A8、UGT2B7、ABCC2和SLC22A1进行测序分型。以鉴定单核苷酸多态性(snp)和/或插入缺失(INDELs)。此外,采用LC-MS/MS法测定了TR及其代谢产物(M1和M2)的浓度。病例按死因分类。所调查的snp / indel在任何组中都没有过度代表。我们发现UGT1A8、ABCC2和SLC22A1基因的几个位点(73个中的12个)与死后TR病例的MRs (M2/M1、TR/M2和TR/M1)之间存在显著相关性。这些结果表明,这4个基因的多态性可能会影响TR的药代动力学,导致治疗效果不理想或增加毒性风险。然而,这些发现应该在未来更大规模的病例研究中得到支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The IPEFA model: An initiative for online training and education as applied by the International Society for Forensic Genetics. Expression of Concern "Population data of 17 Y-STR loci in Nanyang Han population from Henan Province, Central China" [Forensic Sci. Int. Gene. 13 (2014) 145-146]. Expression of Concern "Population genetics of 17 Y-STR loci in a large Chinese Han population from Zhejiang Province, Eastern China" [Forensic Sci. Int. Genet. 5 (2011) e11-e13]. Expression of Concern: "Genetic population data of Yfiler Plus kit from 1434 unrelated Hans in Henan Province (Central China)" [Forensic Sci. Int. Genet. 22 (2016) e25-e27]. Expression of Concern: "Genetic profile of 17 Y chromosome STRs in the Guizhou Han population of southwestern China" [Forensic Sci. Int. Genet. 25 (2016) e6-e7].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1