Decoupled peak property learning for efficient and interpretable electronic circular dichroism spectrum prediction.

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2025-01-03 DOI:10.1038/s43588-024-00757-7
Hao Li, Da Long, Li Yuan, Yu Wang, Yonghong Tian, Xinchang Wang, Fanyang Mo
{"title":"Decoupled peak property learning for efficient and interpretable electronic circular dichroism spectrum prediction.","authors":"Hao Li, Da Long, Li Yuan, Yu Wang, Yonghong Tian, Xinchang Wang, Fanyang Mo","doi":"10.1038/s43588-024-00757-7","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic circular dichroism (ECD) spectra contain key information about molecular chirality by discriminating the absolute configurations of chiral molecules, which is crucial in asymmetric organic synthesis and the drug industry. However, existing predictive approaches lack the consideration of ECD spectra owing to the data scarcity and the limited interpretability to achieve trustworthy prediction. Here we establish a large-scale dataset for chiral molecular ECD spectra and propose ECDFormer for accurate and interpretable ECD spectrum prediction. ECDFormer decomposes ECD spectra into peak entities, uses the QFormer architecture to learn peak properties and renders peaks into spectra. Compared with spectrum sequence prediction methods, our decoupled peak prediction approach substantially enhances both accuracy and efficiency, improving the peak symbol accuracy from 37.3% to 72.7% and decreasing the time cost from an average of 4.6 central processing unit hours to 1.5 s. Moreover, ECDFormer demonstrated its ability to capture molecular orbital information directly from spectral data using the explainable peak-decoupling approach. Furthermore, ECDFormer proved to be equally proficient at predicting various types of spectrum, including infrared and mass spectroscopies, highlighting its substantial generalization capabilities.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-024-00757-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic circular dichroism (ECD) spectra contain key information about molecular chirality by discriminating the absolute configurations of chiral molecules, which is crucial in asymmetric organic synthesis and the drug industry. However, existing predictive approaches lack the consideration of ECD spectra owing to the data scarcity and the limited interpretability to achieve trustworthy prediction. Here we establish a large-scale dataset for chiral molecular ECD spectra and propose ECDFormer for accurate and interpretable ECD spectrum prediction. ECDFormer decomposes ECD spectra into peak entities, uses the QFormer architecture to learn peak properties and renders peaks into spectra. Compared with spectrum sequence prediction methods, our decoupled peak prediction approach substantially enhances both accuracy and efficiency, improving the peak symbol accuracy from 37.3% to 72.7% and decreasing the time cost from an average of 4.6 central processing unit hours to 1.5 s. Moreover, ECDFormer demonstrated its ability to capture molecular orbital information directly from spectral data using the explainable peak-decoupling approach. Furthermore, ECDFormer proved to be equally proficient at predicting various types of spectrum, including infrared and mass spectroscopies, highlighting its substantial generalization capabilities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解耦峰属性学习用于高效和可解释的电子圆二色光谱预测。
电子圆二色性(ECD)光谱通过识别手性分子的绝对构型,包含了分子手性的关键信息,这在不对称有机合成和药物工业中至关重要。然而,由于数据的稀缺性和可解释性的限制,现有的预测方法缺乏对ECD谱的考虑,无法实现可信的预测。本文建立了大规模的手性分子ECD谱数据集,并提出了ECDFormer用于准确、可解释的ECD谱预测。ECDFormer将ECD光谱分解为峰实体,使用QFormer架构学习峰属性,并将峰渲染为光谱。与频谱序列预测方法相比,我们的解耦峰值预测方法大大提高了精度和效率,将峰值符号准确率从37.3%提高到72.7%,将时间成本从平均4.6中央处理单元小时降低到1.5 s。此外,ECDFormer证明了它能够使用可解释的峰解耦方法直接从光谱数据中捕获分子轨道信息。此外,ECDFormer在预测各种类型的光谱(包括红外和质谱)方面同样精通,突出了其强大的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Based on the science, diversity matters Enhancing synthesis prediction via machine learning Harnessing large language models for data-scarce learning of polymer properties. A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies MultiSTAAR delivers multi-trait rare variant analysis of biobank-scale sequencing data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1