Sub-5 Ångstrom Porosity Tuning in Calixarene-Derived Porous Liquids via Supramolecular Complexation Construction

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-06 DOI:10.1002/anie.202421615
Errui Li, Arvind Ganesan, Hongjun Liu, Alexander S. Ivanov, Lilin He, Phattananawee Nalaoh, David M. Jenkins, Carlos Alberto Steren, Narges Mokhtari-Nori, Jianzhi Hu, Bo Li, De-en Jiang, Shannon M. Mahurin, Zhenzhen Yang, Sheng Dai
{"title":"Sub-5 Ångstrom Porosity Tuning in Calixarene-Derived Porous Liquids via Supramolecular Complexation Construction","authors":"Errui Li, Arvind Ganesan, Hongjun Liu, Alexander S. Ivanov, Lilin He, Phattananawee Nalaoh, David M. Jenkins, Carlos Alberto Steren, Narges Mokhtari-Nori, Jianzhi Hu, Bo Li, De-en Jiang, Shannon M. Mahurin, Zhenzhen Yang, Sheng Dai","doi":"10.1002/anie.202421615","DOIUrl":null,"url":null,"abstract":"Precise sub-Ångstrom-level porosity engineering, which is appealing in gas separations, has been demonstrated in solid carbon, polymer, and framework materials but rarely achieved in the liquid phase. In this work, a gas molecular sieving effect in the liquid phase at sub-5 Ångstrom scale is created via sophisticated porosity tuning in calixarene-derived porous liquids (PLs). Type II PLs are constructed via supramolecular complexation between the sodium salts of calixarene derivatives and crown ether solvents. The chemical structure variation and assembly behavior of the porous host upon PL construction are monitored by spectroscopy-, X-ray-, and neutron-scattering techniques. The presence of permanent porosity in calixarene-derived PLs is verified by pressure swing gas uptake, altered CO2 physisorption behavior, and dynamic theoretical simulation. Sub-5 Ångstrom porosity tuning within the PL phase is achieved by introducing bulky substituted groups on the benzene ring of the calixarene host, which then greatly affects the dynamic motion and transport behavior of CO2 molecules and the Xe uptake performance. The approach being demonstrated in this work represents a promising pathway to tune and leverage the porosity effect for enhanced gas uptake capacity and selectivity in liquid sorbents.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"7 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421615","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise sub-Ångstrom-level porosity engineering, which is appealing in gas separations, has been demonstrated in solid carbon, polymer, and framework materials but rarely achieved in the liquid phase. In this work, a gas molecular sieving effect in the liquid phase at sub-5 Ångstrom scale is created via sophisticated porosity tuning in calixarene-derived porous liquids (PLs). Type II PLs are constructed via supramolecular complexation between the sodium salts of calixarene derivatives and crown ether solvents. The chemical structure variation and assembly behavior of the porous host upon PL construction are monitored by spectroscopy-, X-ray-, and neutron-scattering techniques. The presence of permanent porosity in calixarene-derived PLs is verified by pressure swing gas uptake, altered CO2 physisorption behavior, and dynamic theoretical simulation. Sub-5 Ångstrom porosity tuning within the PL phase is achieved by introducing bulky substituted groups on the benzene ring of the calixarene host, which then greatly affects the dynamic motion and transport behavior of CO2 molecules and the Xe uptake performance. The approach being demonstrated in this work represents a promising pathway to tune and leverage the porosity effect for enhanced gas uptake capacity and selectivity in liquid sorbents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Deciphering pH Mismatching at the Electrified Electrode–Electrolyte Interface towards Understanding Intrinsic Water Molecule Oxidation Kinetics Unveiling Chirality in MoS2 Nanosheets: A Breakthrough in Phase Engineering for Enhanced Chiroptical Properties Accessing Azetidines through Magnesium-Mediated Nitrogen Group Transfer from Iminoiodinane to Donor-Acceptor Cyclopropanes CO2 Reduction at a Borane-Modified Iron Complex: A Secondary Coordination Sphere Strategy Late-Stage Diazoester Installation via Arylthianthrenium Salts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1