Errui Li, Arvind Ganesan, Hongjun Liu, Alexander S. Ivanov, Lilin He, Phattananawee Nalaoh, David M. Jenkins, Carlos Alberto Steren, Narges Mokhtari-Nori, Jianzhi Hu, Bo Li, De-en Jiang, Shannon M. Mahurin, Zhenzhen Yang, Sheng Dai
{"title":"Sub-5 Ångstrom Porosity Tuning in Calixarene-Derived Porous Liquids via Supramolecular Complexation Construction","authors":"Errui Li, Arvind Ganesan, Hongjun Liu, Alexander S. Ivanov, Lilin He, Phattananawee Nalaoh, David M. Jenkins, Carlos Alberto Steren, Narges Mokhtari-Nori, Jianzhi Hu, Bo Li, De-en Jiang, Shannon M. Mahurin, Zhenzhen Yang, Sheng Dai","doi":"10.1002/anie.202421615","DOIUrl":null,"url":null,"abstract":"Precise sub-Ångstrom-level porosity engineering, which is appealing in gas separations, has been demonstrated in solid carbon, polymer, and framework materials but rarely achieved in the liquid phase. In this work, a gas molecular sieving effect in the liquid phase at sub-5 Ångstrom scale is created via sophisticated porosity tuning in calixarene-derived porous liquids (PLs). Type II PLs are constructed via supramolecular complexation between the sodium salts of calixarene derivatives and crown ether solvents. The chemical structure variation and assembly behavior of the porous host upon PL construction are monitored by spectroscopy-, X-ray-, and neutron-scattering techniques. The presence of permanent porosity in calixarene-derived PLs is verified by pressure swing gas uptake, altered CO2 physisorption behavior, and dynamic theoretical simulation. Sub-5 Ångstrom porosity tuning within the PL phase is achieved by introducing bulky substituted groups on the benzene ring of the calixarene host, which then greatly affects the dynamic motion and transport behavior of CO2 molecules and the Xe uptake performance. The approach being demonstrated in this work represents a promising pathway to tune and leverage the porosity effect for enhanced gas uptake capacity and selectivity in liquid sorbents.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"7 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421615","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Precise sub-Ångstrom-level porosity engineering, which is appealing in gas separations, has been demonstrated in solid carbon, polymer, and framework materials but rarely achieved in the liquid phase. In this work, a gas molecular sieving effect in the liquid phase at sub-5 Ångstrom scale is created via sophisticated porosity tuning in calixarene-derived porous liquids (PLs). Type II PLs are constructed via supramolecular complexation between the sodium salts of calixarene derivatives and crown ether solvents. The chemical structure variation and assembly behavior of the porous host upon PL construction are monitored by spectroscopy-, X-ray-, and neutron-scattering techniques. The presence of permanent porosity in calixarene-derived PLs is verified by pressure swing gas uptake, altered CO2 physisorption behavior, and dynamic theoretical simulation. Sub-5 Ångstrom porosity tuning within the PL phase is achieved by introducing bulky substituted groups on the benzene ring of the calixarene host, which then greatly affects the dynamic motion and transport behavior of CO2 molecules and the Xe uptake performance. The approach being demonstrated in this work represents a promising pathway to tune and leverage the porosity effect for enhanced gas uptake capacity and selectivity in liquid sorbents.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.