Probing spin effects in Phycocyanin using Janus-like ferromagnetic microparticles

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2025-01-06 DOI:10.1039/d4cp04129a
Avi Schneider, Ilay David, Naama Goren, Hanna Tania Fridman, Guy Lutzky, Shira Yochelis, Hagit Zer, Noam Adir, Nir Keren, Yossi Paltiel
{"title":"Probing spin effects in Phycocyanin using Janus-like ferromagnetic microparticles","authors":"Avi Schneider, Ilay David, Naama Goren, Hanna Tania Fridman, Guy Lutzky, Shira Yochelis, Hagit Zer, Noam Adir, Nir Keren, Yossi Paltiel","doi":"10.1039/d4cp04129a","DOIUrl":null,"url":null,"abstract":"In an era of interdisciplinary scientific research, new methodologies are necessary to simultaneously advance several fields of study. One such case involves the measurement of electron spin effects on biological systems. While magnetic effects are well known in biology, recent years have shown a surge in published evidence isolating the dependence on spin, rather than magnetic field, in biological contexts. Herein we present a simple method for the distinction between the two effects in solution-based samples. The induction of a single uniform spin upon molecules can be achieved by interacting them with a magnetized surface, thereby exposing them to controlled electron spin orientations. With many live biological systems, adsorption to a single surface severely limits the experimental output. Low signal to noise ratio from monolayers interacting with a relatively small surface area, and conformational restrictions due to immobilization, are common challenges when performing biological measurements on macroscopic magnetized surfaces. Here we demonstrate the use of Janus-like ferromagnetic microparticles, originally developed for a spin-based enantiomer separation procedure, as a platform for the spin-controlled measurement of biological molecules in solution. We find new evidence for electron spin involvement in biological systems, with influence observed on the kinetics, and to a lesser degree on the spectrum, of phycocyanin fluorescence. Our results provide both new scientific findings and proof of concept for the use of these unique magnetic particles as a flexible, soluble, high surface area, spin-controlled tool for scientific research.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"27 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04129a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In an era of interdisciplinary scientific research, new methodologies are necessary to simultaneously advance several fields of study. One such case involves the measurement of electron spin effects on biological systems. While magnetic effects are well known in biology, recent years have shown a surge in published evidence isolating the dependence on spin, rather than magnetic field, in biological contexts. Herein we present a simple method for the distinction between the two effects in solution-based samples. The induction of a single uniform spin upon molecules can be achieved by interacting them with a magnetized surface, thereby exposing them to controlled electron spin orientations. With many live biological systems, adsorption to a single surface severely limits the experimental output. Low signal to noise ratio from monolayers interacting with a relatively small surface area, and conformational restrictions due to immobilization, are common challenges when performing biological measurements on macroscopic magnetized surfaces. Here we demonstrate the use of Janus-like ferromagnetic microparticles, originally developed for a spin-based enantiomer separation procedure, as a platform for the spin-controlled measurement of biological molecules in solution. We find new evidence for electron spin involvement in biological systems, with influence observed on the kinetics, and to a lesser degree on the spectrum, of phycocyanin fluorescence. Our results provide both new scientific findings and proof of concept for the use of these unique magnetic particles as a flexible, soluble, high surface area, spin-controlled tool for scientific research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
Light-Induced Electron Spin Qubit Coherences in the Purple Bacterial Reaction Center Protein Modulating electronic properties in hydrogenated silicon nanotubes Steroids and steroid-like compounds alter the ion permeability of phospholipid bilayers via distinct interactions with lipids and interfacial water Electronic structure of norbornadiene and quadricyclane Role of local structural distortions in the variation of martensitic transformation temperature with e/a ratio in Ni2Mn1+xZ1−x (Z = In, Sn or Sb) alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1