Linear energy-stable Runge–Kutta relaxation schemes for the Bi-flux diffusion model

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Analysis with Boundary Elements Pub Date : 2025-02-01 DOI:10.1016/j.enganabound.2024.106087
Jiayue Xu , Cong Xie , Maosheng Jiang
{"title":"Linear energy-stable Runge–Kutta relaxation schemes for the Bi-flux diffusion model","authors":"Jiayue Xu ,&nbsp;Cong Xie ,&nbsp;Maosheng Jiang","doi":"10.1016/j.enganabound.2024.106087","DOIUrl":null,"url":null,"abstract":"<div><div>This paper conducts an in-depth study of nonlinear Bi-flux diffusion models with one energy stable linear relaxation with regularized energy reformulation numerical scheme. This novel scheme combines the single diagonal implicit Runge–Kutta method (SDIRK) in temporal dimension and a meshless generalized finite difference method (GFDM) in spatial dimension. Thus in terms of spatial discretization high quality grids are not required and in terms of time discretization large time step is potential compared with the existing methods. The rigorous proof of the unconditional energy stable property for the scheme is presented. According to different values of the coefficient in nonlinear Bi-flux model, it could degenerate to Allen–Cahn equation, Fisher–Kolmogorov equation and extended Fisher–Kolmogorov model. The accuracy and the effectiveness of the proposed scheme are presented. Moreover, a large number of evolution processes for the nonlinear Bi-flux model under different regimes are demonstrated.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106087"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724005605","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper conducts an in-depth study of nonlinear Bi-flux diffusion models with one energy stable linear relaxation with regularized energy reformulation numerical scheme. This novel scheme combines the single diagonal implicit Runge–Kutta method (SDIRK) in temporal dimension and a meshless generalized finite difference method (GFDM) in spatial dimension. Thus in terms of spatial discretization high quality grids are not required and in terms of time discretization large time step is potential compared with the existing methods. The rigorous proof of the unconditional energy stable property for the scheme is presented. According to different values of the coefficient in nonlinear Bi-flux model, it could degenerate to Allen–Cahn equation, Fisher–Kolmogorov equation and extended Fisher–Kolmogorov model. The accuracy and the effectiveness of the proposed scheme are presented. Moreover, a large number of evolution processes for the nonlinear Bi-flux model under different regimes are demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双通量扩散模型的线性能量稳定龙格-库塔弛豫格式
本文采用正则化的能量重构数值格式,对具有一能量稳定线性松弛的非线性双通量扩散模型进行了深入的研究。该方案结合了时间维的单对角隐式龙格-库塔法(SDIRK)和空间维的无网格广义有限差分法(GFDM)。因此,在空间离散化方面不需要高质量的网格,而在时间离散化方面,与现有方法相比,有可能实现更大的时间步长。给出了该方案无条件能量稳定性质的严格证明。根据非线性双通量模型中不同的系数值,它可以退化为Allen-Cahn方程、Fisher-Kolmogorov方程和扩展的Fisher-Kolmogorov模型。验证了该方案的准确性和有效性。此外,还证明了非线性双通量模型在不同状态下的大量演化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
期刊最新文献
Multi-scale feature fusion quantum depthwise Convolutional Neural Networks for text classification The selection of shape parameter and fictitious radius for RBF collocation method using the modified Franke formula and effective condition number The three-dimensional elastoplastic analysis of bi-directional functionally graded materials using a meshfree global radial basis reproducing kernel particle method Total Lagrangian smoothed particle hydrodynamics for large-strain elastoplasticity with particle resolution refinement using an anisotropic Lagrangian kernel Zonal free element method for solving nonlinear transient heat conduction problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1