Guosheng Wang , Wenwen He , Dechun Lu , Zhiqiang Song , Xiuli Du
{"title":"A peridynamic method for creep and stress relaxation incorporating a novel fractional viscoelastic model","authors":"Guosheng Wang , Wenwen He , Dechun Lu , Zhiqiang Song , Xiuli Du","doi":"10.1016/j.enganabound.2024.106104","DOIUrl":null,"url":null,"abstract":"<div><div>A fractional viscoelastic kernel function is proposed to describe the modulus evolution during the creep and stress relaxation behavior of quasi-brittle materials. A unified fractional viscoelastic model for creep and stress relaxation is further developed, which has the advantages of few parameters and high accuracy. The model can be degenerated into the basic viscoelastic models under different values of fractional order. The relationship between the force state in non-ordinary state-based peridynamics and the stress tensor in the continuum mechanics constitutive model is established. The developed fractional viscoelastic model is then integrated into the peridynamic framework to create a unified creep and stress relaxation peridynamic method. The calibration method of the model parameters is also determined through the equivalence of the peridynamics and the continuum mechanics, and the influence rules of parameters on the viscoelastic behavior of materials are discussed. The effectiveness of the proposed peridynamic method is verified by numerical simulations of a plate, bar, slate, and beam. The proposed method can accurately describe the deformation process from continuous to discontinuous in creep and stress relaxation. This study provides a valuable numerical tool for simulating structural damage caused by creep and stress relaxation in engineering structures during long-term operation.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"171 ","pages":"Article 106104"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724005770","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A fractional viscoelastic kernel function is proposed to describe the modulus evolution during the creep and stress relaxation behavior of quasi-brittle materials. A unified fractional viscoelastic model for creep and stress relaxation is further developed, which has the advantages of few parameters and high accuracy. The model can be degenerated into the basic viscoelastic models under different values of fractional order. The relationship between the force state in non-ordinary state-based peridynamics and the stress tensor in the continuum mechanics constitutive model is established. The developed fractional viscoelastic model is then integrated into the peridynamic framework to create a unified creep and stress relaxation peridynamic method. The calibration method of the model parameters is also determined through the equivalence of the peridynamics and the continuum mechanics, and the influence rules of parameters on the viscoelastic behavior of materials are discussed. The effectiveness of the proposed peridynamic method is verified by numerical simulations of a plate, bar, slate, and beam. The proposed method can accurately describe the deformation process from continuous to discontinuous in creep and stress relaxation. This study provides a valuable numerical tool for simulating structural damage caused by creep and stress relaxation in engineering structures during long-term operation.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.